通过图的大小或谱半径确定生成树的特征

IF 0.9 3区 数学 Q2 MATHEMATICS
Jie Wu
{"title":"通过图的大小或谱半径确定生成树的特征","authors":"Jie Wu","doi":"10.1007/s00010-024-01112-x","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a connected graph and let <span>\\(k\\ge 1\\)</span> be an integer. Let <i>T</i> be a spanning tree of <i>G</i>. The leaf degree of a vertex <span>\\(v\\in V(T)\\)</span> is defined as the number of leaves adjacent to <i>v</i> in <i>T</i>. The leaf degree of <i>T</i> is the maximum leaf degree among all the vertices of <i>T</i>. Let |<i>E</i>(<i>G</i>)| and <span>\\(\\rho (G)\\)</span> denote the size and the spectral radius of <i>G</i>, respectively. In this paper, we first create a lower bound on the size of <i>G</i> to ensure that <i>G</i> admits a spanning tree with leaf degree at most <i>k</i>. Then we establish a lower bound on the spectral radius of <i>G</i> to guarantee that <i>G</i> contains a spanning tree with leaf degree at most <i>k</i>. Finally, we create some extremal graphs to show all the bounds obtained in this paper are sharp.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing spanning trees via the size or the spectral radius of graphs\",\"authors\":\"Jie Wu\",\"doi\":\"10.1007/s00010-024-01112-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a connected graph and let <span>\\\\(k\\\\ge 1\\\\)</span> be an integer. Let <i>T</i> be a spanning tree of <i>G</i>. The leaf degree of a vertex <span>\\\\(v\\\\in V(T)\\\\)</span> is defined as the number of leaves adjacent to <i>v</i> in <i>T</i>. The leaf degree of <i>T</i> is the maximum leaf degree among all the vertices of <i>T</i>. Let |<i>E</i>(<i>G</i>)| and <span>\\\\(\\\\rho (G)\\\\)</span> denote the size and the spectral radius of <i>G</i>, respectively. In this paper, we first create a lower bound on the size of <i>G</i> to ensure that <i>G</i> admits a spanning tree with leaf degree at most <i>k</i>. Then we establish a lower bound on the spectral radius of <i>G</i> to guarantee that <i>G</i> contains a spanning tree with leaf degree at most <i>k</i>. Finally, we create some extremal graphs to show all the bounds obtained in this paper are sharp.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01112-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01112-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个连通图,让 \(k\ge 1\) 是一个整数。让 T 是 G 的生成树。顶点的叶子度 \(v\in V(T)\) 定义为 T 中与 v 相邻的叶子的数量。在本文中,我们首先建立了 G 的大小下限,以确保 G 能容纳一棵叶子度最多为 k 的生成树;然后,我们建立了 G 的谱半径下限,以确保 G 包含一棵叶子度最多为 k 的生成树;最后,我们创建了一些极值图,以证明本文得到的所有下限都是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing spanning trees via the size or the spectral radius of graphs

Let G be a connected graph and let \(k\ge 1\) be an integer. Let T be a spanning tree of G. The leaf degree of a vertex \(v\in V(T)\) is defined as the number of leaves adjacent to v in T. The leaf degree of T is the maximum leaf degree among all the vertices of T. Let |E(G)| and \(\rho (G)\) denote the size and the spectral radius of G, respectively. In this paper, we first create a lower bound on the size of G to ensure that G admits a spanning tree with leaf degree at most k. Then we establish a lower bound on the spectral radius of G to guarantee that G contains a spanning tree with leaf degree at most k. Finally, we create some extremal graphs to show all the bounds obtained in this paper are sharp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信