{"title":"广义立方分区和以质数为模数的过分区的算术性质","authors":"Tewodros Amdeberhan, James A. Sellers, Ajit Singh","doi":"10.1007/s00010-024-01116-7","DOIUrl":null,"url":null,"abstract":"<p>A cubic partition is an integer partition wherein the even parts can appear in two colors. In this paper, we introduce the notion of generalized cubic partitions and prove a number of new congruences akin to the classical Ramanujan-type. We emphasize two methods of proofs, one elementary (relying significantly on functional equations) and the other based on modular forms. We close by proving analogous results for generalized overcubic partitions.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic properties for generalized cubic partitions and overpartitions modulo a prime\",\"authors\":\"Tewodros Amdeberhan, James A. Sellers, Ajit Singh\",\"doi\":\"10.1007/s00010-024-01116-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A cubic partition is an integer partition wherein the even parts can appear in two colors. In this paper, we introduce the notion of generalized cubic partitions and prove a number of new congruences akin to the classical Ramanujan-type. We emphasize two methods of proofs, one elementary (relying significantly on functional equations) and the other based on modular forms. We close by proving analogous results for generalized overcubic partitions.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01116-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01116-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Arithmetic properties for generalized cubic partitions and overpartitions modulo a prime
A cubic partition is an integer partition wherein the even parts can appear in two colors. In this paper, we introduce the notion of generalized cubic partitions and prove a number of new congruences akin to the classical Ramanujan-type. We emphasize two methods of proofs, one elementary (relying significantly on functional equations) and the other based on modular forms. We close by proving analogous results for generalized overcubic partitions.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.