通过不变性对二元均值进行多变量概括

IF 0.9 3区 数学 Q2 MATHEMATICS
Paweł Pasteczka
{"title":"通过不变性对二元均值进行多变量概括","authors":"Paweł Pasteczka","doi":"10.1007/s00010-024-01113-w","DOIUrl":null,"url":null,"abstract":"<p>For a given <i>p</i>-variable mean <span>\\(M :I^p \\rightarrow I\\)</span> (<i>I</i> is a subinterval of <span>\\({\\mathbb {R}}\\)</span>), following (Horwitz in J Math Anal Appl 270(2):499–518, 2002) and (Lawson and Lim in Colloq Math 113(2):191–221, 2008), we can define (under certain assumptions) its <span>\\((p+1)\\)</span>-variable <span>\\(\\beta \\)</span>-invariant extension as the unique solution <span>\\(K :I^{p+1} \\rightarrow I\\)</span> of the functional equation </p><span>$$\\begin{aligned}&amp;K\\big (M(x_2,\\dots ,x_{p+1}),M(x_1,x_3,\\dots ,x_{p+1}),\\dots ,M(x_1,\\dots ,x_p)\\big )\\\\&amp;\\quad =K(x_1,\\dots ,x_{p+1}), \\text { for all }x_1,\\dots ,x_{p+1} \\in I \\end{aligned}$$</span><p>in the family of means. Applying this procedure iteratively we can obtain a mean which is defined for vectors of arbitrary lengths starting from the bivariate one. The aim of this paper is to study the properties of such extensions.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariable generalizations of bivariate means via invariance\",\"authors\":\"Paweł Pasteczka\",\"doi\":\"10.1007/s00010-024-01113-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a given <i>p</i>-variable mean <span>\\\\(M :I^p \\\\rightarrow I\\\\)</span> (<i>I</i> is a subinterval of <span>\\\\({\\\\mathbb {R}}\\\\)</span>), following (Horwitz in J Math Anal Appl 270(2):499–518, 2002) and (Lawson and Lim in Colloq Math 113(2):191–221, 2008), we can define (under certain assumptions) its <span>\\\\((p+1)\\\\)</span>-variable <span>\\\\(\\\\beta \\\\)</span>-invariant extension as the unique solution <span>\\\\(K :I^{p+1} \\\\rightarrow I\\\\)</span> of the functional equation </p><span>$$\\\\begin{aligned}&amp;K\\\\big (M(x_2,\\\\dots ,x_{p+1}),M(x_1,x_3,\\\\dots ,x_{p+1}),\\\\dots ,M(x_1,\\\\dots ,x_p)\\\\big )\\\\\\\\&amp;\\\\quad =K(x_1,\\\\dots ,x_{p+1}), \\\\text { for all }x_1,\\\\dots ,x_{p+1} \\\\in I \\\\end{aligned}$$</span><p>in the family of means. Applying this procedure iteratively we can obtain a mean which is defined for vectors of arbitrary lengths starting from the bivariate one. The aim of this paper is to study the properties of such extensions.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01113-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01113-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的 p 变量均值(M :I^p \rightarrow I\) (I 是 \({\mathbb {R}}\) 的子区间),根据(Horwitz 在 J Math Anal Appl 270(2):499-518, 2002)和(Lawson and Lim in Colloq Math 113(2):191-221, 2008),我们可以定义(在某些假设下)它的(((p+1))-变量((beta)-不变扩展)为唯一解(K :函数方程 $$\begin{aligned}&;K\big (M(x_2,\dots ,x_{p+1}),M(x_1,x_3,\dots ,x_{p+1}),\dots ,M(x_1,\dots ,x_p)\big )\&\quad =K(x_1,\dots ,x_{p+1}), \text { for all }x_1,\dots ,x_{p+1}\in I \end{aligned}$$在均值族中。迭代地应用这一过程,我们可以得到一个均值,该均值定义于从二维向量开始的任意长度的向量。本文旨在研究这种扩展的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multivariable generalizations of bivariate means via invariance

Multivariable generalizations of bivariate means via invariance

For a given p-variable mean \(M :I^p \rightarrow I\) (I is a subinterval of \({\mathbb {R}}\)), following (Horwitz in J Math Anal Appl 270(2):499–518, 2002) and (Lawson and Lim in Colloq Math 113(2):191–221, 2008), we can define (under certain assumptions) its \((p+1)\)-variable \(\beta \)-invariant extension as the unique solution \(K :I^{p+1} \rightarrow I\) of the functional equation

$$\begin{aligned}&K\big (M(x_2,\dots ,x_{p+1}),M(x_1,x_3,\dots ,x_{p+1}),\dots ,M(x_1,\dots ,x_p)\big )\\&\quad =K(x_1,\dots ,x_{p+1}), \text { for all }x_1,\dots ,x_{p+1} \in I \end{aligned}$$

in the family of means. Applying this procedure iteratively we can obtain a mean which is defined for vectors of arbitrary lengths starting from the bivariate one. The aim of this paper is to study the properties of such extensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信