{"title":"采用高斯弛豫时间分布的电阻抗能谱学(EIS-GRTD)检测浸润性导管癌","authors":"Galih Setyawan,Kiagus Aufa Ibrahim,Ryoma Ogawa,Prima Asmara Sejati,Hiroshi Fujimoto,Hiroto Yamamoto,Masahiro Takei","doi":"10.1088/2057-1976/ad795f","DOIUrl":null,"url":null,"abstract":"Breast cancer detection and differentiation of breast tissues are critical for accurate diagnosis and treatment planning. This study addresses the challenge of distinguishing between invasive ductal carcinoma (IDC), normal glandular breast tissues (nGBT), and adipose tissue using electrical impedance spectroscopy combined with Gaussian relaxation-time distribution (EIS-GRTD). The primary objective is to investigate the relaxation-time characteristics of these tissues and their potential to differentiate between normal and abnormal breast tissues. We applied a single-point EIS-GRTD measurement to ten mastectomy specimens across a frequency range f = 4 Hz to 5 MHz. The method calculates the differential ratio of the relaxation-time distribution function ∆γ between IDC and nGBT, which is denoted by 〖∆γ〗^(IDC-nGBT), and ∆γ between IDC and adipose tissues, which is denoted by 〖∆γ〗^(IDC-adipose). As a result, the differential ratio of ∆γ between IDC and nGBT 〖∆γ〗^(IDC-nGBT) is 0.36, and between IDC and adipose 〖∆γ〗^(IDC-adipose) is 0.27, which included in the α-dispersion at τ^peak1= 0.033 ± 0.001 s. In all specimens, the relaxation-time distribution function γ of IDC γ^IDC is higher, and there is no intersection with γ of nGBT γ^nGBT and adipose γ^adipose. The difference in γ suggests potential variations in relaxation properties at the molecular or structural level within each breast tissue that contribute to the overall relaxation response. The average mean percentage error δ for IDC, nGBT, and adipose tissues are 5.90%, 6.33%, and 8.07%, respectively, demonstrating the model's accuracy and reliability. This study provides novel insights into the use of relaxation-time characteristic for differentiating breast tissue types, offering potential advancements in diagnosis methods. Future research will focus on correlating EIS-GRTD finding with pathological results from the same test sites to further validate the method's efficacy.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"397 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Invasive Ductal Carcinoma by Electrical Impedance Spectroscopy Implementing Gaussian Relaxation-Time Distribution (EIS-GRTD).\",\"authors\":\"Galih Setyawan,Kiagus Aufa Ibrahim,Ryoma Ogawa,Prima Asmara Sejati,Hiroshi Fujimoto,Hiroto Yamamoto,Masahiro Takei\",\"doi\":\"10.1088/2057-1976/ad795f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer detection and differentiation of breast tissues are critical for accurate diagnosis and treatment planning. This study addresses the challenge of distinguishing between invasive ductal carcinoma (IDC), normal glandular breast tissues (nGBT), and adipose tissue using electrical impedance spectroscopy combined with Gaussian relaxation-time distribution (EIS-GRTD). The primary objective is to investigate the relaxation-time characteristics of these tissues and their potential to differentiate between normal and abnormal breast tissues. We applied a single-point EIS-GRTD measurement to ten mastectomy specimens across a frequency range f = 4 Hz to 5 MHz. The method calculates the differential ratio of the relaxation-time distribution function ∆γ between IDC and nGBT, which is denoted by 〖∆γ〗^(IDC-nGBT), and ∆γ between IDC and adipose tissues, which is denoted by 〖∆γ〗^(IDC-adipose). As a result, the differential ratio of ∆γ between IDC and nGBT 〖∆γ〗^(IDC-nGBT) is 0.36, and between IDC and adipose 〖∆γ〗^(IDC-adipose) is 0.27, which included in the α-dispersion at τ^peak1= 0.033 ± 0.001 s. In all specimens, the relaxation-time distribution function γ of IDC γ^IDC is higher, and there is no intersection with γ of nGBT γ^nGBT and adipose γ^adipose. The difference in γ suggests potential variations in relaxation properties at the molecular or structural level within each breast tissue that contribute to the overall relaxation response. The average mean percentage error δ for IDC, nGBT, and adipose tissues are 5.90%, 6.33%, and 8.07%, respectively, demonstrating the model's accuracy and reliability. This study provides novel insights into the use of relaxation-time characteristic for differentiating breast tissue types, offering potential advancements in diagnosis methods. Future research will focus on correlating EIS-GRTD finding with pathological results from the same test sites to further validate the method's efficacy.\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\"397 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad795f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad795f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Detection of Invasive Ductal Carcinoma by Electrical Impedance Spectroscopy Implementing Gaussian Relaxation-Time Distribution (EIS-GRTD).
Breast cancer detection and differentiation of breast tissues are critical for accurate diagnosis and treatment planning. This study addresses the challenge of distinguishing between invasive ductal carcinoma (IDC), normal glandular breast tissues (nGBT), and adipose tissue using electrical impedance spectroscopy combined with Gaussian relaxation-time distribution (EIS-GRTD). The primary objective is to investigate the relaxation-time characteristics of these tissues and their potential to differentiate between normal and abnormal breast tissues. We applied a single-point EIS-GRTD measurement to ten mastectomy specimens across a frequency range f = 4 Hz to 5 MHz. The method calculates the differential ratio of the relaxation-time distribution function ∆γ between IDC and nGBT, which is denoted by 〖∆γ〗^(IDC-nGBT), and ∆γ between IDC and adipose tissues, which is denoted by 〖∆γ〗^(IDC-adipose). As a result, the differential ratio of ∆γ between IDC and nGBT 〖∆γ〗^(IDC-nGBT) is 0.36, and between IDC and adipose 〖∆γ〗^(IDC-adipose) is 0.27, which included in the α-dispersion at τ^peak1= 0.033 ± 0.001 s. In all specimens, the relaxation-time distribution function γ of IDC γ^IDC is higher, and there is no intersection with γ of nGBT γ^nGBT and adipose γ^adipose. The difference in γ suggests potential variations in relaxation properties at the molecular or structural level within each breast tissue that contribute to the overall relaxation response. The average mean percentage error δ for IDC, nGBT, and adipose tissues are 5.90%, 6.33%, and 8.07%, respectively, demonstrating the model's accuracy and reliability. This study provides novel insights into the use of relaxation-time characteristic for differentiating breast tissue types, offering potential advancements in diagnosis methods. Future research will focus on correlating EIS-GRTD finding with pathological results from the same test sites to further validate the method's efficacy.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.