重新审视双参数威布尔分布的最大对数似然参数估计:理论与应用

IF 1.1 3区 数学 Q1 MATHEMATICS
Thomas Kneib, Jan-Christian Schlüter, Benjamin Wacker
{"title":"重新审视双参数威布尔分布的最大对数似然参数估计:理论与应用","authors":"Thomas Kneib, Jan-Christian Schlüter, Benjamin Wacker","doi":"10.1007/s00025-024-02258-5","DOIUrl":null,"url":null,"abstract":"<p>In this article, we reexamine properties of maximum log-likelihood parameter estimation for two-parameter Weibull distributions which have been applied in many different sciences. Finding reasons for this popularity is a key question. Our main contribution is a thorough existence and uniqueness proof for a global maximizer with respect to the parameter space. We first provide existence and uniqueness of local maximizers by Schauder’s first fixed point theorem, monotony arguments and local concavity of its Hessian matrix. Thus, we can prove our main result of existence and uniqueness of a global maximizer by considering all limiting cases with respect to the parameter space. We finally strengthen our theoretical findings on four data sets. On the one hand, two synthetic data sets underline our need for our data assumptions while, on the other hand, we choose two data sets from wind engineering and reliability engineering to demonstrate usefulness in real-world applications.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting Maximum Log-Likelihood Parameter Estimation for Two-Parameter Weibull Distributions: Theory and Applications\",\"authors\":\"Thomas Kneib, Jan-Christian Schlüter, Benjamin Wacker\",\"doi\":\"10.1007/s00025-024-02258-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we reexamine properties of maximum log-likelihood parameter estimation for two-parameter Weibull distributions which have been applied in many different sciences. Finding reasons for this popularity is a key question. Our main contribution is a thorough existence and uniqueness proof for a global maximizer with respect to the parameter space. We first provide existence and uniqueness of local maximizers by Schauder’s first fixed point theorem, monotony arguments and local concavity of its Hessian matrix. Thus, we can prove our main result of existence and uniqueness of a global maximizer by considering all limiting cases with respect to the parameter space. We finally strengthen our theoretical findings on four data sets. On the one hand, two synthetic data sets underline our need for our data assumptions while, on the other hand, we choose two data sets from wind engineering and reliability engineering to demonstrate usefulness in real-world applications.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02258-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02258-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将重新探讨双参数 Weibull 分布的最大对数似然参数估计的特性,这些特性已被应用于许多不同的科学领域。找到这种流行的原因是一个关键问题。我们的主要贡献是彻底证明了参数空间全局最大化的存在性和唯一性。我们首先通过 Schauder 第一定点定理、单调性论证及其 Hessian 矩阵的局部凹性,提供了局部最大化的存在性和唯一性。这样,我们就可以通过考虑参数空间的所有极限情况,证明全局最大化的存在性和唯一性这一主要结果。最后,我们在四个数据集上强化了我们的理论发现。一方面,两个合成数据集强调了我们对数据假设的需求;另一方面,我们选择了风能工程和可靠性工程中的两个数据集,以证明其在实际应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revisiting Maximum Log-Likelihood Parameter Estimation for Two-Parameter Weibull Distributions: Theory and Applications

Revisiting Maximum Log-Likelihood Parameter Estimation for Two-Parameter Weibull Distributions: Theory and Applications

In this article, we reexamine properties of maximum log-likelihood parameter estimation for two-parameter Weibull distributions which have been applied in many different sciences. Finding reasons for this popularity is a key question. Our main contribution is a thorough existence and uniqueness proof for a global maximizer with respect to the parameter space. We first provide existence and uniqueness of local maximizers by Schauder’s first fixed point theorem, monotony arguments and local concavity of its Hessian matrix. Thus, we can prove our main result of existence and uniqueness of a global maximizer by considering all limiting cases with respect to the parameter space. We finally strengthen our theoretical findings on four data sets. On the one hand, two synthetic data sets underline our need for our data assumptions while, on the other hand, we choose two data sets from wind engineering and reliability engineering to demonstrate usefulness in real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信