线性正算子序列在 $$C_{2\pi }\left( {{\mathbb {R}}}\right) $$ 上的新渐近评估

IF 1.1 3区 数学 Q1 MATHEMATICS
Dumitru Popa
{"title":"线性正算子序列在 $$C_{2\\pi }\\left( {{\\mathbb {R}}}\\right) $$ 上的新渐近评估","authors":"Dumitru Popa","doi":"10.1007/s00025-024-02257-6","DOIUrl":null,"url":null,"abstract":"<p>In the paper we give new asymptotic evaluations for sequences of linear positive operators <span>\\(V_{n}:C_{2\\pi }\\left( {{\\mathbb {R}}}\\right) \\rightarrow C_{2\\pi }\\left( {{\\mathbb {R}}}\\right) \\)</span>. Our method of the proof is entirely different than those known in this area. As applications we complete and extend known asymptotic evaluations in this topic.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Asymptotic Evaluations for Sequences of Linear Positive Operators on $$C_{2\\\\pi }\\\\left( {{\\\\mathbb {R}}}\\\\right) $$\",\"authors\":\"Dumitru Popa\",\"doi\":\"10.1007/s00025-024-02257-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the paper we give new asymptotic evaluations for sequences of linear positive operators <span>\\\\(V_{n}:C_{2\\\\pi }\\\\left( {{\\\\mathbb {R}}}\\\\right) \\\\rightarrow C_{2\\\\pi }\\\\left( {{\\\\mathbb {R}}}\\\\right) \\\\)</span>. Our method of the proof is entirely different than those known in this area. As applications we complete and extend known asymptotic evaluations in this topic.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02257-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02257-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了线性正算子序列 \(V_{n}:C_{2\pi }\left( {{\mathbb {R}}}\right) \rightarrow C_{2\pi }\left( {{\mathbb {R}}\right) \)的新渐近评估。)我们的证明方法与这一领域已知的方法完全不同。作为应用,我们完成并扩展了这一课题中已知的渐近评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Asymptotic Evaluations for Sequences of Linear Positive Operators on $$C_{2\pi }\left( {{\mathbb {R}}}\right) $$

In the paper we give new asymptotic evaluations for sequences of linear positive operators \(V_{n}:C_{2\pi }\left( {{\mathbb {R}}}\right) \rightarrow C_{2\pi }\left( {{\mathbb {R}}}\right) \). Our method of the proof is entirely different than those known in this area. As applications we complete and extend known asymptotic evaluations in this topic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信