{"title":"傅里叶-斯蒂尔杰斯代数 p-Analog 的限制定理","authors":"Arvish Dabra, N. Shravan Kumar","doi":"10.1007/s00025-024-02263-8","DOIUrl":null,"url":null,"abstract":"<p>For a locally compact group <i>G</i> and <span>\\(1< p < \\infty ,\\)</span> let <span>\\(B_{p}(G)\\)</span> denote the <i>p</i>-analog of the Fourier–Stieltjes algebra <span>\\(B(G) \\, (\\text {or} \\, B_2(G))\\)</span>. Let <span>\\(r: B_{p}(G) \\rightarrow B_p(H)\\)</span> be the restriction map given by <span>\\(r(u) = u|_H\\)</span> for any closed subgroup <i>H</i> of <i>G</i>. In this article, we prove that the restriction map <i>r</i> is a surjective isometry for any open subgroup <i>H</i> of <i>G</i>. Further, we show that the range of the map <i>r</i> is dense in <span>\\(B_p(H)\\)</span> when <i>H</i> is either a compact normal subgroup of <i>G</i> or compact subgroup of an [SIN]<span>\\(_H\\)</span>-group.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restriction Theorems for the p-Analog of the Fourier–Stieltjes Algebra\",\"authors\":\"Arvish Dabra, N. Shravan Kumar\",\"doi\":\"10.1007/s00025-024-02263-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a locally compact group <i>G</i> and <span>\\\\(1< p < \\\\infty ,\\\\)</span> let <span>\\\\(B_{p}(G)\\\\)</span> denote the <i>p</i>-analog of the Fourier–Stieltjes algebra <span>\\\\(B(G) \\\\, (\\\\text {or} \\\\, B_2(G))\\\\)</span>. Let <span>\\\\(r: B_{p}(G) \\\\rightarrow B_p(H)\\\\)</span> be the restriction map given by <span>\\\\(r(u) = u|_H\\\\)</span> for any closed subgroup <i>H</i> of <i>G</i>. In this article, we prove that the restriction map <i>r</i> is a surjective isometry for any open subgroup <i>H</i> of <i>G</i>. Further, we show that the range of the map <i>r</i> is dense in <span>\\\\(B_p(H)\\\\)</span> when <i>H</i> is either a compact normal subgroup of <i>G</i> or compact subgroup of an [SIN]<span>\\\\(_H\\\\)</span>-group.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02263-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02263-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于局部紧凑群 G 和 \(1< p < \infty ,\) 让 \(B_{p}(G)\) 表示傅里叶-斯蒂尔杰斯代数 \(B(G) \, (\text {or}, B_2(G))\ 的 p-analog 。\B_2(G)).让 \(r:B_{p}(G) \rightarrow B_p(H)\) 是对于 G 的任何封闭子群 H 由 \(r(u) = u|_H\) 给出的限制映射。此外,我们还证明了当 H 是 G 的紧凑正则子群或[SIN]\(_H\)-群的紧凑子群时,映射 r 的范围密集于 \(B_p(H)\)。
Restriction Theorems for the p-Analog of the Fourier–Stieltjes Algebra
For a locally compact group G and \(1< p < \infty ,\) let \(B_{p}(G)\) denote the p-analog of the Fourier–Stieltjes algebra \(B(G) \, (\text {or} \, B_2(G))\). Let \(r: B_{p}(G) \rightarrow B_p(H)\) be the restriction map given by \(r(u) = u|_H\) for any closed subgroup H of G. In this article, we prove that the restriction map r is a surjective isometry for any open subgroup H of G. Further, we show that the range of the map r is dense in \(B_p(H)\) when H is either a compact normal subgroup of G or compact subgroup of an [SIN]\(_H\)-group.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.