傅里叶-斯蒂尔杰斯代数 p-Analog 的限制定理

IF 1.1 3区 数学 Q1 MATHEMATICS
Arvish Dabra, N. Shravan Kumar
{"title":"傅里叶-斯蒂尔杰斯代数 p-Analog 的限制定理","authors":"Arvish Dabra, N. Shravan Kumar","doi":"10.1007/s00025-024-02263-8","DOIUrl":null,"url":null,"abstract":"<p>For a locally compact group <i>G</i> and <span>\\(1&lt; p &lt; \\infty ,\\)</span> let <span>\\(B_{p}(G)\\)</span> denote the <i>p</i>-analog of the Fourier–Stieltjes algebra <span>\\(B(G) \\, (\\text {or} \\, B_2(G))\\)</span>. Let <span>\\(r: B_{p}(G) \\rightarrow B_p(H)\\)</span> be the restriction map given by <span>\\(r(u) = u|_H\\)</span> for any closed subgroup <i>H</i> of <i>G</i>. In this article, we prove that the restriction map <i>r</i> is a surjective isometry for any open subgroup <i>H</i> of <i>G</i>. Further, we show that the range of the map <i>r</i> is dense in <span>\\(B_p(H)\\)</span> when <i>H</i> is either a compact normal subgroup of <i>G</i> or compact subgroup of an [SIN]<span>\\(_H\\)</span>-group.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restriction Theorems for the p-Analog of the Fourier–Stieltjes Algebra\",\"authors\":\"Arvish Dabra, N. Shravan Kumar\",\"doi\":\"10.1007/s00025-024-02263-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a locally compact group <i>G</i> and <span>\\\\(1&lt; p &lt; \\\\infty ,\\\\)</span> let <span>\\\\(B_{p}(G)\\\\)</span> denote the <i>p</i>-analog of the Fourier–Stieltjes algebra <span>\\\\(B(G) \\\\, (\\\\text {or} \\\\, B_2(G))\\\\)</span>. Let <span>\\\\(r: B_{p}(G) \\\\rightarrow B_p(H)\\\\)</span> be the restriction map given by <span>\\\\(r(u) = u|_H\\\\)</span> for any closed subgroup <i>H</i> of <i>G</i>. In this article, we prove that the restriction map <i>r</i> is a surjective isometry for any open subgroup <i>H</i> of <i>G</i>. Further, we show that the range of the map <i>r</i> is dense in <span>\\\\(B_p(H)\\\\)</span> when <i>H</i> is either a compact normal subgroup of <i>G</i> or compact subgroup of an [SIN]<span>\\\\(_H\\\\)</span>-group.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02263-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02263-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于局部紧凑群 G 和 \(1< p < \infty ,\) 让 \(B_{p}(G)\) 表示傅里叶-斯蒂尔杰斯代数 \(B(G) \, (\text {or}, B_2(G))\ 的 p-analog 。\B_2(G)).让 \(r:B_{p}(G) \rightarrow B_p(H)\) 是对于 G 的任何封闭子群 H 由 \(r(u) = u|_H\) 给出的限制映射。此外,我们还证明了当 H 是 G 的紧凑正则子群或[SIN]\(_H\)-群的紧凑子群时,映射 r 的范围密集于 \(B_p(H)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restriction Theorems for the p-Analog of the Fourier–Stieltjes Algebra

For a locally compact group G and \(1< p < \infty ,\) let \(B_{p}(G)\) denote the p-analog of the Fourier–Stieltjes algebra \(B(G) \, (\text {or} \, B_2(G))\). Let \(r: B_{p}(G) \rightarrow B_p(H)\) be the restriction map given by \(r(u) = u|_H\) for any closed subgroup H of G. In this article, we prove that the restriction map r is a surjective isometry for any open subgroup H of G. Further, we show that the range of the map r is dense in \(B_p(H)\) when H is either a compact normal subgroup of G or compact subgroup of an [SIN]\(_H\)-group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信