对流双相问题的正解

IF 1.1 3区 数学 Q1 MATHEMATICS
Nikolao S. Papageorgiou, Zijia Peng
{"title":"对流双相问题的正解","authors":"Nikolao S. Papageorgiou, Zijia Peng","doi":"10.1007/s00025-024-02262-9","DOIUrl":null,"url":null,"abstract":"<p>We consider a nonlinear Dirichlet problem driven by the double phase differential operator and a reaction that has the competing effects of a parametric concave term and of a convective perturbation. Using truncation and comparison techniques and the theory of nonlinear operators of monotone type, we show that for all small values of the parameter, the problem has a bounded positive solution.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive Solutions for Convective Double Phase Problems\",\"authors\":\"Nikolao S. Papageorgiou, Zijia Peng\",\"doi\":\"10.1007/s00025-024-02262-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a nonlinear Dirichlet problem driven by the double phase differential operator and a reaction that has the competing effects of a parametric concave term and of a convective perturbation. Using truncation and comparison techniques and the theory of nonlinear operators of monotone type, we show that for all small values of the parameter, the problem has a bounded positive solution.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02262-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02262-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个由双相微分算子和反应驱动的非线性迪里夏特问题,该反应具有参数凹项和对流扰动的竞争效应。利用截断和比较技术以及单调型非线性算子理论,我们证明了对于所有小的参数值,该问题都有一个有界的正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Positive Solutions for Convective Double Phase Problems

Positive Solutions for Convective Double Phase Problems

We consider a nonlinear Dirichlet problem driven by the double phase differential operator and a reaction that has the competing effects of a parametric concave term and of a convective perturbation. Using truncation and comparison techniques and the theory of nonlinear operators of monotone type, we show that for all small values of the parameter, the problem has a bounded positive solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信