{"title":"带基本算子项的 m 对称算子","authors":"B. P. Duggal, I. H. Kim","doi":"10.1007/s00025-024-02272-7","DOIUrl":null,"url":null,"abstract":"<p>Given Banach space operators <i>A</i>, <i>B</i>, let <span>\\(\\delta _{A,B}\\)</span> denote the generalised derivation <span>\\(\\delta (X)=(L_{A}-R_{B})(X)=AX-XB\\)</span> and <span>\\(\\triangle _{A,B}\\)</span> the length two elementary operator <span>\\(\\triangle _{A,B}(X)=(I-L_AR_B)(X)=X-AXB\\)</span>. This note considers the structure of <i>m</i>-symmetric operators <span>\\(\\delta ^m_{\\triangle _{A_1,B_1},\\triangle _{A_2,B_2}}(I)=(L_{\\triangle _{A_1,B_1}} - R_{\\triangle _{A_2,B_2}})^m(I)=0\\)</span>. It is seen that there exist scalars <span>\\(\\lambda _i\\in \\sigma _a(B_1)\\)</span>, <span>\\(1\\le i\\le 2\\)</span>, such that <span>\\(\\delta ^m_{\\lambda _1 A_1,\\lambda _2 A_2}(I)=0\\)</span>. Translated to Hilbert space operators <i>A</i> and <i>B</i> this implies that if <span>\\(\\delta ^m_{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span>, then there exists <span>\\({\\overline{\\lambda }}\\in \\sigma _a(B^*)\\)</span> such that <span>\\(\\delta ^m_{(\\lambda A)^*,\\lambda A}(I)=0=\\delta ^m_{{\\overline{\\lambda }}B,\\lambda B^*}(I)\\)</span>. We prove that the operator <span>\\(\\delta ^m_{\\triangle _{A^*,B^*},\\triangle _{A,B}}\\)</span> is compact if and only if (i) there exists a real number <span>\\(\\alpha \\)</span> and finite sequnces (i) <span>\\(\\{a_j\\}_{j=1}^n\\subseteq \\sigma (A)\\)</span>, <span>\\(\\{b_j\\}_{j=1}^n\\subseteq \\sigma (B)\\)</span> such that <span>\\(a_jb_j=1-\\alpha \\)</span>, <span>\\(1\\le j\\le n\\)</span>; (ii) decompositions <span>\\(\\oplus _{j=1}^n {\\mathcal {H}}_j\\)</span> and <span>\\(\\oplus _{j=1}^n{\\texttt {H}_J}\\)</span> of <span>\\({\\mathcal {H}}\\)</span> such that <span>\\(\\oplus _{j=1}^n{(A-a_j I)|_{\\ H_j}}\\)</span> and <span>\\(\\oplus _{j=1}^n{(B-b_j I)|_{\\texttt {H}_j}}\\)</span> are nilpotent. If <span>\\(\\delta ^{m}_{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span> implies <span>\\(\\delta _{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span>, then <i>A</i> and <i>B</i> satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for <span>\\(\\delta ^{m}_{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span> to imply <span>\\(\\delta _{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span> is that <span>\\({\\lambda }A\\)</span> and <span>\\({\\overline{\\lambda }}B\\)</span> satisfy the commutativity property for scalars <span>\\(\\overline{lambda} \\in \\sigma _a(B^*)\\)</span>. An analogous result is seen to hold for the operators <span>\\(\\triangle ^m_{\\delta _{A^*,B^*},\\delta _{A,B}}\\)</span> and <span>\\(\\triangle ^m_{\\delta _{A^*,B^*},\\delta _{A,B}}(I)\\)</span>. Perturbation by commuting nilpotents is considered.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m-symmetric Operators with Elementary Operator Entries\",\"authors\":\"B. P. Duggal, I. H. Kim\",\"doi\":\"10.1007/s00025-024-02272-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given Banach space operators <i>A</i>, <i>B</i>, let <span>\\\\(\\\\delta _{A,B}\\\\)</span> denote the generalised derivation <span>\\\\(\\\\delta (X)=(L_{A}-R_{B})(X)=AX-XB\\\\)</span> and <span>\\\\(\\\\triangle _{A,B}\\\\)</span> the length two elementary operator <span>\\\\(\\\\triangle _{A,B}(X)=(I-L_AR_B)(X)=X-AXB\\\\)</span>. This note considers the structure of <i>m</i>-symmetric operators <span>\\\\(\\\\delta ^m_{\\\\triangle _{A_1,B_1},\\\\triangle _{A_2,B_2}}(I)=(L_{\\\\triangle _{A_1,B_1}} - R_{\\\\triangle _{A_2,B_2}})^m(I)=0\\\\)</span>. It is seen that there exist scalars <span>\\\\(\\\\lambda _i\\\\in \\\\sigma _a(B_1)\\\\)</span>, <span>\\\\(1\\\\le i\\\\le 2\\\\)</span>, such that <span>\\\\(\\\\delta ^m_{\\\\lambda _1 A_1,\\\\lambda _2 A_2}(I)=0\\\\)</span>. Translated to Hilbert space operators <i>A</i> and <i>B</i> this implies that if <span>\\\\(\\\\delta ^m_{\\\\triangle _{A^*,B^*},\\\\triangle _{A,B}}(I)=0\\\\)</span>, then there exists <span>\\\\({\\\\overline{\\\\lambda }}\\\\in \\\\sigma _a(B^*)\\\\)</span> such that <span>\\\\(\\\\delta ^m_{(\\\\lambda A)^*,\\\\lambda A}(I)=0=\\\\delta ^m_{{\\\\overline{\\\\lambda }}B,\\\\lambda B^*}(I)\\\\)</span>. We prove that the operator <span>\\\\(\\\\delta ^m_{\\\\triangle _{A^*,B^*},\\\\triangle _{A,B}}\\\\)</span> is compact if and only if (i) there exists a real number <span>\\\\(\\\\alpha \\\\)</span> and finite sequnces (i) <span>\\\\(\\\\{a_j\\\\}_{j=1}^n\\\\subseteq \\\\sigma (A)\\\\)</span>, <span>\\\\(\\\\{b_j\\\\}_{j=1}^n\\\\subseteq \\\\sigma (B)\\\\)</span> such that <span>\\\\(a_jb_j=1-\\\\alpha \\\\)</span>, <span>\\\\(1\\\\le j\\\\le n\\\\)</span>; (ii) decompositions <span>\\\\(\\\\oplus _{j=1}^n {\\\\mathcal {H}}_j\\\\)</span> and <span>\\\\(\\\\oplus _{j=1}^n{\\\\texttt {H}_J}\\\\)</span> of <span>\\\\({\\\\mathcal {H}}\\\\)</span> such that <span>\\\\(\\\\oplus _{j=1}^n{(A-a_j I)|_{\\\\ H_j}}\\\\)</span> and <span>\\\\(\\\\oplus _{j=1}^n{(B-b_j I)|_{\\\\texttt {H}_j}}\\\\)</span> are nilpotent. If <span>\\\\(\\\\delta ^{m}_{\\\\triangle _{A^*,B^*},\\\\triangle _{A,B}}(I)=0\\\\)</span> implies <span>\\\\(\\\\delta _{\\\\triangle _{A^*,B^*},\\\\triangle _{A,B}}(I)=0\\\\)</span>, then <i>A</i> and <i>B</i> satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for <span>\\\\(\\\\delta ^{m}_{\\\\triangle _{A^*,B^*},\\\\triangle _{A,B}}(I)=0\\\\)</span> to imply <span>\\\\(\\\\delta _{\\\\triangle _{A^*,B^*},\\\\triangle _{A,B}}(I)=0\\\\)</span> is that <span>\\\\({\\\\lambda }A\\\\)</span> and <span>\\\\({\\\\overline{\\\\lambda }}B\\\\)</span> satisfy the commutativity property for scalars <span>\\\\(\\\\overline{lambda} \\\\in \\\\sigma _a(B^*)\\\\)</span>. An analogous result is seen to hold for the operators <span>\\\\(\\\\triangle ^m_{\\\\delta _{A^*,B^*},\\\\delta _{A,B}}\\\\)</span> and <span>\\\\(\\\\triangle ^m_{\\\\delta _{A^*,B^*},\\\\delta _{A,B}}(I)\\\\)</span>. Perturbation by commuting nilpotents is considered.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02272-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02272-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
m-symmetric Operators with Elementary Operator Entries
Given Banach space operators A, B, let \(\delta _{A,B}\) denote the generalised derivation \(\delta (X)=(L_{A}-R_{B})(X)=AX-XB\) and \(\triangle _{A,B}\) the length two elementary operator \(\triangle _{A,B}(X)=(I-L_AR_B)(X)=X-AXB\). This note considers the structure of m-symmetric operators \(\delta ^m_{\triangle _{A_1,B_1},\triangle _{A_2,B_2}}(I)=(L_{\triangle _{A_1,B_1}} - R_{\triangle _{A_2,B_2}})^m(I)=0\). It is seen that there exist scalars \(\lambda _i\in \sigma _a(B_1)\), \(1\le i\le 2\), such that \(\delta ^m_{\lambda _1 A_1,\lambda _2 A_2}(I)=0\). Translated to Hilbert space operators A and B this implies that if \(\delta ^m_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\), then there exists \({\overline{\lambda }}\in \sigma _a(B^*)\) such that \(\delta ^m_{(\lambda A)^*,\lambda A}(I)=0=\delta ^m_{{\overline{\lambda }}B,\lambda B^*}(I)\). We prove that the operator \(\delta ^m_{\triangle _{A^*,B^*},\triangle _{A,B}}\) is compact if and only if (i) there exists a real number \(\alpha \) and finite sequnces (i) \(\{a_j\}_{j=1}^n\subseteq \sigma (A)\), \(\{b_j\}_{j=1}^n\subseteq \sigma (B)\) such that \(a_jb_j=1-\alpha \), \(1\le j\le n\); (ii) decompositions \(\oplus _{j=1}^n {\mathcal {H}}_j\) and \(\oplus _{j=1}^n{\texttt {H}_J}\) of \({\mathcal {H}}\) such that \(\oplus _{j=1}^n{(A-a_j I)|_{\ H_j}}\) and \(\oplus _{j=1}^n{(B-b_j I)|_{\texttt {H}_j}}\) are nilpotent. If \(\delta ^{m}_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) implies \(\delta _{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\), then A and B satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for \(\delta ^{m}_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) to imply \(\delta _{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) is that \({\lambda }A\) and \({\overline{\lambda }}B\) satisfy the commutativity property for scalars \(\overline{lambda} \in \sigma _a(B^*)\). An analogous result is seen to hold for the operators \(\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}\) and \(\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}(I)\). Perturbation by commuting nilpotents is considered.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.