{"title":"利用概率和分组方法进行有效的故障定位","authors":"Saksham Sahai Srivastava, Arpita Dutta, Rajib Mall","doi":"10.1007/s13198-024-02479-5","DOIUrl":null,"url":null,"abstract":"<p>Fault localization (FL) is the key activity while debugging a program. Any improvement to this activity leads to significant improvement in total software development cost. In the paper, we present a conditional probability statistics based fault localization technique that derives the association between statement coverage information and test case execution result. This association with the failed test case result shows the fault containing probability of that specific statement. Subsequently, we use a grouping method to refine the obtained statement ranking sequence for better fault localization. We named our proposed FL technique as CGFL, it is an abbreviation of Conditional probability and Grouping based Fault Localization. We evaluated the effectiveness of the proposed method over eleven open-source data sets from Defects4j and SIR repositories. Our obtained results show that on average, the proposed CGFL method is 24.56% more effective than contemporary FL techniques namely D<span>\\(^*\\)</span>, Tarantula, Ochiai, Crosstab, BPNN, RBFNN, DNN, and CNN.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":"13 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective fault localization using probabilistic and grouping approach\",\"authors\":\"Saksham Sahai Srivastava, Arpita Dutta, Rajib Mall\",\"doi\":\"10.1007/s13198-024-02479-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fault localization (FL) is the key activity while debugging a program. Any improvement to this activity leads to significant improvement in total software development cost. In the paper, we present a conditional probability statistics based fault localization technique that derives the association between statement coverage information and test case execution result. This association with the failed test case result shows the fault containing probability of that specific statement. Subsequently, we use a grouping method to refine the obtained statement ranking sequence for better fault localization. We named our proposed FL technique as CGFL, it is an abbreviation of Conditional probability and Grouping based Fault Localization. We evaluated the effectiveness of the proposed method over eleven open-source data sets from Defects4j and SIR repositories. Our obtained results show that on average, the proposed CGFL method is 24.56% more effective than contemporary FL techniques namely D<span>\\\\(^*\\\\)</span>, Tarantula, Ochiai, Crosstab, BPNN, RBFNN, DNN, and CNN.</p>\",\"PeriodicalId\":14463,\"journal\":{\"name\":\"International Journal of System Assurance Engineering and Management\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of System Assurance Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13198-024-02479-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02479-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Effective fault localization using probabilistic and grouping approach
Fault localization (FL) is the key activity while debugging a program. Any improvement to this activity leads to significant improvement in total software development cost. In the paper, we present a conditional probability statistics based fault localization technique that derives the association between statement coverage information and test case execution result. This association with the failed test case result shows the fault containing probability of that specific statement. Subsequently, we use a grouping method to refine the obtained statement ranking sequence for better fault localization. We named our proposed FL technique as CGFL, it is an abbreviation of Conditional probability and Grouping based Fault Localization. We evaluated the effectiveness of the proposed method over eleven open-source data sets from Defects4j and SIR repositories. Our obtained results show that on average, the proposed CGFL method is 24.56% more effective than contemporary FL techniques namely D\(^*\), Tarantula, Ochiai, Crosstab, BPNN, RBFNN, DNN, and CNN.
期刊介绍:
This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems.
Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.