单位的正割分布

IF 1.1 3区 数学 Q1 MATHEMATICS
Mustafa Gezek
{"title":"单位的正割分布","authors":"Mustafa Gezek","doi":"10.1007/s00025-024-02261-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>U</i> be a unital embedded in a projective plane <span>\\(\\Pi \\)</span> of order <span>\\(q^2\\)</span>. For <span>\\(R\\in U\\)</span>, let <span>\\(s_R\\)</span> and <span>\\(t_R\\)</span> be a secant line through <i>R</i> and the tangent line to <i>U</i> at point <i>R</i>, respectively. If the tangent lines to <i>U</i>, passing through the points in <span>\\(s_R\\cap U\\)</span>, intersect at a single point on <span>\\(t_R\\)</span>, then <span>\\(s_R\\)</span> is referred to as a secant line satisfying the desired property. If <span>\\(n_i\\)</span> of the points of <i>U</i> have exactly <span>\\(m_i\\)</span> secant lines satisfying the desired property, then </p><span>$$\\begin{aligned} m_1^{n_1}, m_2^{n_2}, \\cdots \\end{aligned}$$</span><p>is called the secant distribution of <i>U</i>, where <span>\\(\\sum n_i=q^3+1\\)</span>, and <span>\\(0\\le m_i\\le q^2\\)</span>. In this article, we show that collinear pedal sets of a unital <i>U</i> plays an important role in the secant distribution of <i>U</i>. Formulas for secant distributions of unitals having <span>\\(0,1,q^2,\\)</span> or <span>\\(q^2+q\\)</span> special points are provided. Statistics regarding to secant distributions of unitals embedded in planes of orders <span>\\(q^2\\le 25\\)</span> are presented. Some open problems related to secant distributions of unitals having specific number of collinear pedal sets are discussed. </p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"54 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secant Distributions of Unitals\",\"authors\":\"Mustafa Gezek\",\"doi\":\"10.1007/s00025-024-02261-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>U</i> be a unital embedded in a projective plane <span>\\\\(\\\\Pi \\\\)</span> of order <span>\\\\(q^2\\\\)</span>. For <span>\\\\(R\\\\in U\\\\)</span>, let <span>\\\\(s_R\\\\)</span> and <span>\\\\(t_R\\\\)</span> be a secant line through <i>R</i> and the tangent line to <i>U</i> at point <i>R</i>, respectively. If the tangent lines to <i>U</i>, passing through the points in <span>\\\\(s_R\\\\cap U\\\\)</span>, intersect at a single point on <span>\\\\(t_R\\\\)</span>, then <span>\\\\(s_R\\\\)</span> is referred to as a secant line satisfying the desired property. If <span>\\\\(n_i\\\\)</span> of the points of <i>U</i> have exactly <span>\\\\(m_i\\\\)</span> secant lines satisfying the desired property, then </p><span>$$\\\\begin{aligned} m_1^{n_1}, m_2^{n_2}, \\\\cdots \\\\end{aligned}$$</span><p>is called the secant distribution of <i>U</i>, where <span>\\\\(\\\\sum n_i=q^3+1\\\\)</span>, and <span>\\\\(0\\\\le m_i\\\\le q^2\\\\)</span>. In this article, we show that collinear pedal sets of a unital <i>U</i> plays an important role in the secant distribution of <i>U</i>. Formulas for secant distributions of unitals having <span>\\\\(0,1,q^2,\\\\)</span> or <span>\\\\(q^2+q\\\\)</span> special points are provided. Statistics regarding to secant distributions of unitals embedded in planes of orders <span>\\\\(q^2\\\\le 25\\\\)</span> are presented. Some open problems related to secant distributions of unitals having specific number of collinear pedal sets are discussed. </p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02261-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02261-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 U 是一个嵌入阶为 \(q^2\) 的投影面 \(\Pi \)的单元。对于 \(R\in U\), 让 \(s_R\) 和 \(t_R\) 分别是经过 R 的一条正割直线和 U 在 R 点的切线。如果经过 \(s_R\cap U\) 中的点的 U 的切线相交于 \(t_R\) 上的一个点,那么 \(s_R\) 就被称为满足所需的性质的一条正割直线。如果 U 的 \(n_i\) 个点恰好有 \(m_i\) 条满足所需属性的正割直线,那么 $$begin{aligned} m_1^{n_1}, m_2^{n_2}, \cdots \end{aligned}$$称为 U 的正割分布,其中 \(um n_i=q^3+1\), and\(0\le m_i\le q^2\).在本文中,我们证明了单值 U 的共线踏板集在单值 U 的正割分布中起着重要作用。给出了嵌入阶 \(q^2\le 25\) 平面的单元的正割分布的统计量。讨论了与具有特定数量的共线踏板集的单元数的正割分布有关的一些未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secant Distributions of Unitals

Let U be a unital embedded in a projective plane \(\Pi \) of order \(q^2\). For \(R\in U\), let \(s_R\) and \(t_R\) be a secant line through R and the tangent line to U at point R, respectively. If the tangent lines to U, passing through the points in \(s_R\cap U\), intersect at a single point on \(t_R\), then \(s_R\) is referred to as a secant line satisfying the desired property. If \(n_i\) of the points of U have exactly \(m_i\) secant lines satisfying the desired property, then

$$\begin{aligned} m_1^{n_1}, m_2^{n_2}, \cdots \end{aligned}$$

is called the secant distribution of U, where \(\sum n_i=q^3+1\), and \(0\le m_i\le q^2\). In this article, we show that collinear pedal sets of a unital U plays an important role in the secant distribution of U. Formulas for secant distributions of unitals having \(0,1,q^2,\) or \(q^2+q\) special points are provided. Statistics regarding to secant distributions of unitals embedded in planes of orders \(q^2\le 25\) are presented. Some open problems related to secant distributions of unitals having specific number of collinear pedal sets are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信