Josef F. Dorfmeister, Roland Hildebrand, Shimpei Kobayashi
{"title":"准复数投影空间的半维沉浸和鲁-维尔姆类型定理","authors":"Josef F. Dorfmeister, Roland Hildebrand, Shimpei Kobayashi","doi":"10.1007/s00025-024-02271-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study isometric immersions <span>\\(f:M^n \\rightarrow {\\mathbb {C}^{\\prime }}\\!P^n \\)</span> of an <i>n</i>-dimensional pseudo-Riemannian manifold <span>\\(M^n\\)</span> into the <i>n</i>-dimensional para-complex projective space <span>\\({\\mathbb {C}^{\\prime }}\\!P^n \\)</span>. We study the immersion <i>f</i> by means of a lift <span>\\(\\mathfrak {f}\\)</span> of <i>f</i> into a quadric hypersurface in <span>\\(S^{2n+1}_{n+1}\\)</span>. We find the frame equations and compatibility conditions. We specialize these results to dimension <span>\\(n = 2\\)</span> and a definite metric on <span>\\(M^2\\)</span> in isothermal coordinates and consider the special cases of Lagrangian surface immersions and minimal surface immersions. We characterize surface immersions with special properties in terms of primitive harmonicity of the Gauss maps.\n</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Half-Dimensional Immersions into the Para-Complex Projective Space and Ruh–Vilms Type Theorems\",\"authors\":\"Josef F. Dorfmeister, Roland Hildebrand, Shimpei Kobayashi\",\"doi\":\"10.1007/s00025-024-02271-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study isometric immersions <span>\\\\(f:M^n \\\\rightarrow {\\\\mathbb {C}^{\\\\prime }}\\\\!P^n \\\\)</span> of an <i>n</i>-dimensional pseudo-Riemannian manifold <span>\\\\(M^n\\\\)</span> into the <i>n</i>-dimensional para-complex projective space <span>\\\\({\\\\mathbb {C}^{\\\\prime }}\\\\!P^n \\\\)</span>. We study the immersion <i>f</i> by means of a lift <span>\\\\(\\\\mathfrak {f}\\\\)</span> of <i>f</i> into a quadric hypersurface in <span>\\\\(S^{2n+1}_{n+1}\\\\)</span>. We find the frame equations and compatibility conditions. We specialize these results to dimension <span>\\\\(n = 2\\\\)</span> and a definite metric on <span>\\\\(M^2\\\\)</span> in isothermal coordinates and consider the special cases of Lagrangian surface immersions and minimal surface immersions. We characterize surface immersions with special properties in terms of primitive harmonicity of the Gauss maps.\\n</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02271-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02271-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究 n 维伪黎曼流形 \(M^n\) 到 n 维副复投影空间 \({\mathbb {C}^{\prime }}\!P^n\) 的等距浸入(f:M^n \rightarrow {mathbb {C}^{\prime }}\!P^n \)。我们通过把 f 提升到 \(S^{2n+1}_{n+1}\) 中的二次超曲面来研究浸入 f。我们找到了框架方程和相容条件。我们将这些结果特化到维度(n = 2)和等温坐标下的(M^2)上的定度量,并考虑了拉格朗日表面沉浸和最小表面沉浸的特殊情况。我们用高斯映射的基元谐波性来描述具有特殊性质的表面沉浸。
Half-Dimensional Immersions into the Para-Complex Projective Space and Ruh–Vilms Type Theorems
In this paper we study isometric immersions \(f:M^n \rightarrow {\mathbb {C}^{\prime }}\!P^n \) of an n-dimensional pseudo-Riemannian manifold \(M^n\) into the n-dimensional para-complex projective space \({\mathbb {C}^{\prime }}\!P^n \). We study the immersion f by means of a lift \(\mathfrak {f}\) of f into a quadric hypersurface in \(S^{2n+1}_{n+1}\). We find the frame equations and compatibility conditions. We specialize these results to dimension \(n = 2\) and a definite metric on \(M^2\) in isothermal coordinates and consider the special cases of Lagrangian surface immersions and minimal surface immersions. We characterize surface immersions with special properties in terms of primitive harmonicity of the Gauss maps.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.