准复数投影空间的半维沉浸和鲁-维尔姆类型定理

IF 1.1 3区 数学 Q1 MATHEMATICS
Josef F. Dorfmeister, Roland Hildebrand, Shimpei Kobayashi
{"title":"准复数投影空间的半维沉浸和鲁-维尔姆类型定理","authors":"Josef F. Dorfmeister, Roland Hildebrand, Shimpei Kobayashi","doi":"10.1007/s00025-024-02271-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study isometric immersions <span>\\(f:M^n \\rightarrow {\\mathbb {C}^{\\prime }}\\!P^n \\)</span> of an <i>n</i>-dimensional pseudo-Riemannian manifold <span>\\(M^n\\)</span> into the <i>n</i>-dimensional para-complex projective space <span>\\({\\mathbb {C}^{\\prime }}\\!P^n \\)</span>. We study the immersion <i>f</i> by means of a lift <span>\\(\\mathfrak {f}\\)</span> of <i>f</i> into a quadric hypersurface in <span>\\(S^{2n+1}_{n+1}\\)</span>. We find the frame equations and compatibility conditions. We specialize these results to dimension <span>\\(n = 2\\)</span> and a definite metric on <span>\\(M^2\\)</span> in isothermal coordinates and consider the special cases of Lagrangian surface immersions and minimal surface immersions. We characterize surface immersions with special properties in terms of primitive harmonicity of the Gauss maps.\n</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Half-Dimensional Immersions into the Para-Complex Projective Space and Ruh–Vilms Type Theorems\",\"authors\":\"Josef F. Dorfmeister, Roland Hildebrand, Shimpei Kobayashi\",\"doi\":\"10.1007/s00025-024-02271-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study isometric immersions <span>\\\\(f:M^n \\\\rightarrow {\\\\mathbb {C}^{\\\\prime }}\\\\!P^n \\\\)</span> of an <i>n</i>-dimensional pseudo-Riemannian manifold <span>\\\\(M^n\\\\)</span> into the <i>n</i>-dimensional para-complex projective space <span>\\\\({\\\\mathbb {C}^{\\\\prime }}\\\\!P^n \\\\)</span>. We study the immersion <i>f</i> by means of a lift <span>\\\\(\\\\mathfrak {f}\\\\)</span> of <i>f</i> into a quadric hypersurface in <span>\\\\(S^{2n+1}_{n+1}\\\\)</span>. We find the frame equations and compatibility conditions. We specialize these results to dimension <span>\\\\(n = 2\\\\)</span> and a definite metric on <span>\\\\(M^2\\\\)</span> in isothermal coordinates and consider the special cases of Lagrangian surface immersions and minimal surface immersions. We characterize surface immersions with special properties in terms of primitive harmonicity of the Gauss maps.\\n</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02271-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02271-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究 n 维伪黎曼流形 \(M^n\) 到 n 维副复投影空间 \({\mathbb {C}^{\prime }}\!P^n\) 的等距浸入(f:M^n \rightarrow {mathbb {C}^{\prime }}\!P^n \)。我们通过把 f 提升到 \(S^{2n+1}_{n+1}\) 中的二次超曲面来研究浸入 f。我们找到了框架方程和相容条件。我们将这些结果特化到维度(n = 2)和等温坐标下的(M^2)上的定度量,并考虑了拉格朗日表面沉浸和最小表面沉浸的特殊情况。我们用高斯映射的基元谐波性来描述具有特殊性质的表面沉浸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Half-Dimensional Immersions into the Para-Complex Projective Space and Ruh–Vilms Type Theorems

Half-Dimensional Immersions into the Para-Complex Projective Space and Ruh–Vilms Type Theorems

In this paper we study isometric immersions \(f:M^n \rightarrow {\mathbb {C}^{\prime }}\!P^n \) of an n-dimensional pseudo-Riemannian manifold \(M^n\) into the n-dimensional para-complex projective space \({\mathbb {C}^{\prime }}\!P^n \). We study the immersion f by means of a lift \(\mathfrak {f}\) of f into a quadric hypersurface in \(S^{2n+1}_{n+1}\). We find the frame equations and compatibility conditions. We specialize these results to dimension \(n = 2\) and a definite metric on \(M^2\) in isothermal coordinates and consider the special cases of Lagrangian surface immersions and minimal surface immersions. We characterize surface immersions with special properties in terms of primitive harmonicity of the Gauss maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信