{"title":"利用摩擦能耗对屈曲约束支撑进行伪静态测试","authors":"Yaxiong Liang, Xiaodong Li, Linghui Jiang","doi":"10.1007/s13369-024-09528-y","DOIUrl":null,"url":null,"abstract":"<p>To achieve a controllable carrying and deformation capacity without needing post-earthquake replacement, this study introduces a novel design for buckling-restrained braces, leveraging friction energy dissipation. The braces comprise four integral components: an inner steel tube, a high-strength compression spring, a friction plate, and an outer steel tube. An axial cyclic loading test conducted on three distinct sets of specimens with varied components investigates the carrying capacity, deformation capacity, and energy dissipation capacity of the buckling-restrained braces. Furthermore, an analysis is performed to assess the influence of the high-strength compression spring and friction plate material on the overall performance of the buckling-restrained braces. The test results demonstrate that, in comparison with the traditional buckling restrained brace, the friction buckling restrained brace exhibits the following advantages: (1) The hysteresis curve of the friction dissipative buckling restrained brace exhibits superior coverage compared to that of the traditional buckling restrained brace; (2) the FBRB demonstrates enhanced load-carrying, deformation, and energy dissipation capabilities compared to the BRB; and (3) the FBRB exhibits a distinctive axial adjustment capacity due to the incorporation of spring members, which can extend the service life of the member. The findings indicate that this type of buckling-restrained brace exhibits an adjustable carrying and deformation capacity, a complete hysteretic curve, and no buckling of the core member under compression. The application of these braces proves effective in significantly reducing the cost of structural rehabilitation post-earthquake.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"24 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-Static Test of Buckling-Restrained Braces Using Friction Energy Consumption\",\"authors\":\"Yaxiong Liang, Xiaodong Li, Linghui Jiang\",\"doi\":\"10.1007/s13369-024-09528-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To achieve a controllable carrying and deformation capacity without needing post-earthquake replacement, this study introduces a novel design for buckling-restrained braces, leveraging friction energy dissipation. The braces comprise four integral components: an inner steel tube, a high-strength compression spring, a friction plate, and an outer steel tube. An axial cyclic loading test conducted on three distinct sets of specimens with varied components investigates the carrying capacity, deformation capacity, and energy dissipation capacity of the buckling-restrained braces. Furthermore, an analysis is performed to assess the influence of the high-strength compression spring and friction plate material on the overall performance of the buckling-restrained braces. The test results demonstrate that, in comparison with the traditional buckling restrained brace, the friction buckling restrained brace exhibits the following advantages: (1) The hysteresis curve of the friction dissipative buckling restrained brace exhibits superior coverage compared to that of the traditional buckling restrained brace; (2) the FBRB demonstrates enhanced load-carrying, deformation, and energy dissipation capabilities compared to the BRB; and (3) the FBRB exhibits a distinctive axial adjustment capacity due to the incorporation of spring members, which can extend the service life of the member. The findings indicate that this type of buckling-restrained brace exhibits an adjustable carrying and deformation capacity, a complete hysteretic curve, and no buckling of the core member under compression. The application of these braces proves effective in significantly reducing the cost of structural rehabilitation post-earthquake.</p>\",\"PeriodicalId\":8109,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s13369-024-09528-y\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09528-y","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Pseudo-Static Test of Buckling-Restrained Braces Using Friction Energy Consumption
To achieve a controllable carrying and deformation capacity without needing post-earthquake replacement, this study introduces a novel design for buckling-restrained braces, leveraging friction energy dissipation. The braces comprise four integral components: an inner steel tube, a high-strength compression spring, a friction plate, and an outer steel tube. An axial cyclic loading test conducted on three distinct sets of specimens with varied components investigates the carrying capacity, deformation capacity, and energy dissipation capacity of the buckling-restrained braces. Furthermore, an analysis is performed to assess the influence of the high-strength compression spring and friction plate material on the overall performance of the buckling-restrained braces. The test results demonstrate that, in comparison with the traditional buckling restrained brace, the friction buckling restrained brace exhibits the following advantages: (1) The hysteresis curve of the friction dissipative buckling restrained brace exhibits superior coverage compared to that of the traditional buckling restrained brace; (2) the FBRB demonstrates enhanced load-carrying, deformation, and energy dissipation capabilities compared to the BRB; and (3) the FBRB exhibits a distinctive axial adjustment capacity due to the incorporation of spring members, which can extend the service life of the member. The findings indicate that this type of buckling-restrained brace exhibits an adjustable carrying and deformation capacity, a complete hysteretic curve, and no buckling of the core member under compression. The application of these braces proves effective in significantly reducing the cost of structural rehabilitation post-earthquake.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.