作为质量多样性优化的算法场景生成

Stefanos Nikolaidis
{"title":"作为质量多样性优化的算法场景生成","authors":"Stefanos Nikolaidis","doi":"arxiv-2409.04711","DOIUrl":null,"url":null,"abstract":"The increasing complexity of robots and autonomous agents that interact with\npeople highlights the critical need for approaches that systematically test\nthem before deployment. This review paper presents a general framework for\nsolving this problem, describes the insights that we have gained from working\non each component of the framework, and shows how integrating these components\nleads to the discovery of a diverse range of realistic and challenging\nscenarios that reveal previously unknown failures in deployed robotic systems\ninteracting with people.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic Scenario Generation as Quality Diversity Optimization\",\"authors\":\"Stefanos Nikolaidis\",\"doi\":\"arxiv-2409.04711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing complexity of robots and autonomous agents that interact with\\npeople highlights the critical need for approaches that systematically test\\nthem before deployment. This review paper presents a general framework for\\nsolving this problem, describes the insights that we have gained from working\\non each component of the framework, and shows how integrating these components\\nleads to the discovery of a diverse range of realistic and challenging\\nscenarios that reveal previously unknown failures in deployed robotic systems\\ninteracting with people.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与人交互的机器人和自主代理的复杂性日益增加,这凸显了在部署前对它们进行系统测试的方法的迫切需求。这篇综述论文介绍了解决这一问题的总体框架,描述了我们从该框架的各个组成部分中获得的启示,并展示了如何通过整合这些组成部分来发现各种现实和具有挑战性的情景,从而揭示已部署的与人交互的机器人系统中以前未知的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithmic Scenario Generation as Quality Diversity Optimization
The increasing complexity of robots and autonomous agents that interact with people highlights the critical need for approaches that systematically test them before deployment. This review paper presents a general framework for solving this problem, describes the insights that we have gained from working on each component of the framework, and shows how integrating these components leads to the discovery of a diverse range of realistic and challenging scenarios that reveal previously unknown failures in deployed robotic systems interacting with people.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信