人工智能控制游戏:人工智能部署协议的安全评估模型

Charlie Griffin, Louis Thomson, Buck Shlegeris, Alessandro Abate
{"title":"人工智能控制游戏:人工智能部署协议的安全评估模型","authors":"Charlie Griffin, Louis Thomson, Buck Shlegeris, Alessandro Abate","doi":"arxiv-2409.07985","DOIUrl":null,"url":null,"abstract":"To evaluate the safety and usefulness of deployment protocols for untrusted\nAIs, AI Control uses a red-teaming exercise played between a protocol designer\nand an adversary. This paper introduces AI-Control Games, a formal\ndecision-making model of the red-teaming exercise as a multi-objective,\npartially observable, stochastic game. We also introduce methods for finding\noptimal protocols in AI-Control Games, by reducing them to a set of zero-sum\npartially observable stochastic games. We apply our formalism to model,\nevaluate and synthesise protocols for deploying untrusted language models as\nprogramming assistants, focusing on Trusted Monitoring protocols, which use\nweaker language models and limited human assistance. Finally, we demonstrate\nthe utility of our formalism by showcasing improvements over empirical studies\nin existing settings, evaluating protocols in new settings, and analysing how\nmodelling assumptions affect the safety and usefulness of protocols.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Games for AI Control: Models of Safety Evaluations of AI Deployment Protocols\",\"authors\":\"Charlie Griffin, Louis Thomson, Buck Shlegeris, Alessandro Abate\",\"doi\":\"arxiv-2409.07985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To evaluate the safety and usefulness of deployment protocols for untrusted\\nAIs, AI Control uses a red-teaming exercise played between a protocol designer\\nand an adversary. This paper introduces AI-Control Games, a formal\\ndecision-making model of the red-teaming exercise as a multi-objective,\\npartially observable, stochastic game. We also introduce methods for finding\\noptimal protocols in AI-Control Games, by reducing them to a set of zero-sum\\npartially observable stochastic games. We apply our formalism to model,\\nevaluate and synthesise protocols for deploying untrusted language models as\\nprogramming assistants, focusing on Trusted Monitoring protocols, which use\\nweaker language models and limited human assistance. Finally, we demonstrate\\nthe utility of our formalism by showcasing improvements over empirical studies\\nin existing settings, evaluating protocols in new settings, and analysing how\\nmodelling assumptions affect the safety and usefulness of protocols.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了评估不受信任的人工智能部署协议的安全性和实用性,《人工智能控制》使用了协议设计者与对手之间的 "红队演习"(red-teaming exercise)。本文介绍了人工智能控制游戏,这是一种多目标、部分可观测、随机博弈的红队练习形式决策模型。我们还介绍了在人工智能控制博弈中寻找最优协议的方法,将其简化为一组零-部分可观测随机博弈。我们将我们的形式主义应用于建模、评估和合成将不信任的语言模型部署为编程助手的协议,重点是使用弱者语言模型和有限人工协助的可信监控协议。最后,我们展示了我们的形式主义在现有环境下对经验研究的改进,评估了新环境下的协议,并分析了建模假设如何影响协议的安全性和实用性,从而证明了我们的形式主义的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Games for AI Control: Models of Safety Evaluations of AI Deployment Protocols
To evaluate the safety and usefulness of deployment protocols for untrusted AIs, AI Control uses a red-teaming exercise played between a protocol designer and an adversary. This paper introduces AI-Control Games, a formal decision-making model of the red-teaming exercise as a multi-objective, partially observable, stochastic game. We also introduce methods for finding optimal protocols in AI-Control Games, by reducing them to a set of zero-sum partially observable stochastic games. We apply our formalism to model, evaluate and synthesise protocols for deploying untrusted language models as programming assistants, focusing on Trusted Monitoring protocols, which use weaker language models and limited human assistance. Finally, we demonstrate the utility of our formalism by showcasing improvements over empirical studies in existing settings, evaluating protocols in new settings, and analysing how modelling assumptions affect the safety and usefulness of protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信