三维中的大地向量场、诱导接触结构和紧密性

Pub Date : 2024-09-12 DOI:10.1007/s10711-024-00942-y
Tilman Becker
{"title":"三维中的大地向量场、诱导接触结构和紧密性","authors":"Tilman Becker","doi":"10.1007/s10711-024-00942-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we provide new and simpler proofs of two theorems of Gluck and Harrison on contact structures induced by great circle or line fibrations. Furthermore, we prove that a geodesic vector field whose Jacobi tensor is parallel along flow lines (e.g. if the underlying manifold is locally symmetric) induces a contact structure if the ‘mixed’ sectional curvatures are nonnegative, and if a certain nondegeneracy condition holds. Additionally, we prove that in dimension three, contact structures admitting a Reeb flow which is either periodic, isometric, or free and proper, must be universally tight. In particular, we generalise an earlier result of Geiges and the author, by showing that every contact form on <span>\\({\\mathbb {R}}^3\\)</span> whose Reeb vector field spans a line fibration is necessarily tight. Furthermore, we provide a characterisation of isometric Reeb vector fields. As an application, we recover a result of Kegel and Lange on Seifert fibrations spanned by Reeb vector fields, and we classify closed contact 3-manifolds with isometric Reeb flows (also known as <i>R</i>-contact manifolds) up to diffeomorphism.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesic vector fields, induced contact structures and tightness in dimension three\",\"authors\":\"Tilman Becker\",\"doi\":\"10.1007/s10711-024-00942-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we provide new and simpler proofs of two theorems of Gluck and Harrison on contact structures induced by great circle or line fibrations. Furthermore, we prove that a geodesic vector field whose Jacobi tensor is parallel along flow lines (e.g. if the underlying manifold is locally symmetric) induces a contact structure if the ‘mixed’ sectional curvatures are nonnegative, and if a certain nondegeneracy condition holds. Additionally, we prove that in dimension three, contact structures admitting a Reeb flow which is either periodic, isometric, or free and proper, must be universally tight. In particular, we generalise an earlier result of Geiges and the author, by showing that every contact form on <span>\\\\({\\\\mathbb {R}}^3\\\\)</span> whose Reeb vector field spans a line fibration is necessarily tight. Furthermore, we provide a characterisation of isometric Reeb vector fields. As an application, we recover a result of Kegel and Lange on Seifert fibrations spanned by Reeb vector fields, and we classify closed contact 3-manifolds with isometric Reeb flows (also known as <i>R</i>-contact manifolds) up to diffeomorphism.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00942-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00942-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对格鲁克和哈里森关于大圆或直线纤变诱导的接触结构的两个定理进行了新的、更简单的证明。此外,我们还证明,如果 "混合 "截面曲率为非负,且某个非孤立条件成立,则雅可比张量沿流线平行的大地向量场(例如,如果底层流形是局部对称的)会诱发接触结构。此外,我们还证明了在三维空间中,允许周期性、等距或自由且适当的里伯流的接触结构必须是普遍紧密的。特别是,我们推广了 Geiges 和作者的一个早期结果,证明了 \({\mathbb {R}}^3\) 上的每个接触形式,其里布向量场跨越了线纤度,都必然是紧密的。此外,我们还提供了等距里布向量场的特征。作为应用,我们恢复了凯格尔和朗格关于里布向量场跨越的塞弗特纤度的一个结果,并对具有等距里布流的闭合接触3-流形(也称为R-接触流形)进行了直到衍射的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Geodesic vector fields, induced contact structures and tightness in dimension three

In this paper, we provide new and simpler proofs of two theorems of Gluck and Harrison on contact structures induced by great circle or line fibrations. Furthermore, we prove that a geodesic vector field whose Jacobi tensor is parallel along flow lines (e.g. if the underlying manifold is locally symmetric) induces a contact structure if the ‘mixed’ sectional curvatures are nonnegative, and if a certain nondegeneracy condition holds. Additionally, we prove that in dimension three, contact structures admitting a Reeb flow which is either periodic, isometric, or free and proper, must be universally tight. In particular, we generalise an earlier result of Geiges and the author, by showing that every contact form on \({\mathbb {R}}^3\) whose Reeb vector field spans a line fibration is necessarily tight. Furthermore, we provide a characterisation of isometric Reeb vector fields. As an application, we recover a result of Kegel and Lange on Seifert fibrations spanned by Reeb vector fields, and we classify closed contact 3-manifolds with isometric Reeb flows (also known as R-contact manifolds) up to diffeomorphism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信