整合端到端和模块化驾驶方法,实现自动驾驶中的在线拐角检测

Gemb Kaljavesi, Xiyan Su, Frank Diermeyer
{"title":"整合端到端和模块化驾驶方法,实现自动驾驶中的在线拐角检测","authors":"Gemb Kaljavesi, Xiyan Su, Frank Diermeyer","doi":"arxiv-2409.01178","DOIUrl":null,"url":null,"abstract":"Online corner case detection is crucial for ensuring safety in autonomous\ndriving vehicles. Current autonomous driving approaches can be categorized into\nmodular approaches and end-to-end approaches. To leverage the advantages of\nboth, we propose a method for online corner case detection that integrates an\nend-to-end approach into a modular system. The modular system takes over the\nprimary driving task and the end-to-end network runs in parallel as a secondary\none, the disagreement between the systems is then used for corner case\ndetection. We implement this method on a real vehicle and evaluate it\nqualitatively. Our results demonstrate that end-to-end networks, known for\ntheir superior situational awareness, as secondary driving systems, can\neffectively contribute to corner case detection. These findings suggest that\nsuch an approach holds potential for enhancing the safety of autonomous\nvehicles.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating End-to-End and Modular Driving Approaches for Online Corner Case Detection in Autonomous Driving\",\"authors\":\"Gemb Kaljavesi, Xiyan Su, Frank Diermeyer\",\"doi\":\"arxiv-2409.01178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online corner case detection is crucial for ensuring safety in autonomous\\ndriving vehicles. Current autonomous driving approaches can be categorized into\\nmodular approaches and end-to-end approaches. To leverage the advantages of\\nboth, we propose a method for online corner case detection that integrates an\\nend-to-end approach into a modular system. The modular system takes over the\\nprimary driving task and the end-to-end network runs in parallel as a secondary\\none, the disagreement between the systems is then used for corner case\\ndetection. We implement this method on a real vehicle and evaluate it\\nqualitatively. Our results demonstrate that end-to-end networks, known for\\ntheir superior situational awareness, as secondary driving systems, can\\neffectively contribute to corner case detection. These findings suggest that\\nsuch an approach holds potential for enhancing the safety of autonomous\\nvehicles.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线拐角情况检测对于确保自动驾驶车辆的安全至关重要。目前的自动驾驶方法可分为模块化方法和端到端方法。为了充分利用这两种方法的优势,我们提出了一种在线拐角检测方法,将端到端方法集成到模块化系统中。模块化系统接管主要驾驶任务,端到端网络作为辅助任务并行运行,然后利用系统之间的分歧进行拐角检测。我们在一辆真实车辆上实施了这种方法,并对其进行了定性评估。我们的结果表明,以卓越的态势感知能力而著称的端到端网络作为辅助驾驶系统,能够有效地促进转弯检测。这些研究结果表明,这种方法具有提高自动驾驶汽车安全性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating End-to-End and Modular Driving Approaches for Online Corner Case Detection in Autonomous Driving
Online corner case detection is crucial for ensuring safety in autonomous driving vehicles. Current autonomous driving approaches can be categorized into modular approaches and end-to-end approaches. To leverage the advantages of both, we propose a method for online corner case detection that integrates an end-to-end approach into a modular system. The modular system takes over the primary driving task and the end-to-end network runs in parallel as a secondary one, the disagreement between the systems is then used for corner case detection. We implement this method on a real vehicle and evaluate it qualitatively. Our results demonstrate that end-to-end networks, known for their superior situational awareness, as secondary driving systems, can effectively contribute to corner case detection. These findings suggest that such an approach holds potential for enhancing the safety of autonomous vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信