InfraLib:为大规模基础设施管理提供强化学习和决策支持

Pranay Thangeda, Trevor S. Betz, Michael N. Grussing, Melkior Ornik
{"title":"InfraLib:为大规模基础设施管理提供强化学习和决策支持","authors":"Pranay Thangeda, Trevor S. Betz, Michael N. Grussing, Melkior Ornik","doi":"arxiv-2409.03167","DOIUrl":null,"url":null,"abstract":"Efficient management of infrastructure systems is crucial for economic\nstability, sustainability, and public safety. However, infrastructure\nmanagement is challenging due to the vast scale of systems, stochastic\ndeterioration of components, partial observability, and resource constraints.\nWhile data-driven approaches like reinforcement learning (RL) offer a promising\navenue for optimizing management policies, their application to infrastructure\nhas been limited by the lack of suitable simulation environments. We introduce\nInfraLib, a comprehensive framework for modeling and analyzing infrastructure\nmanagement problems. InfraLib employs a hierarchical, stochastic approach to\nrealistically model infrastructure systems and their deterioration. It supports\npractical functionality such as modeling component unavailability, cyclical\nbudgets, and catastrophic failures. To facilitate research, InfraLib provides\ntools for expert data collection, simulation-driven analysis, and\nvisualization. We demonstrate InfraLib's capabilities through case studies on a\nreal-world road network and a synthetic benchmark with 100,000 components.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InfraLib: Enabling Reinforcement Learning and Decision Making for Large Scale Infrastructure Management\",\"authors\":\"Pranay Thangeda, Trevor S. Betz, Michael N. Grussing, Melkior Ornik\",\"doi\":\"arxiv-2409.03167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient management of infrastructure systems is crucial for economic\\nstability, sustainability, and public safety. However, infrastructure\\nmanagement is challenging due to the vast scale of systems, stochastic\\ndeterioration of components, partial observability, and resource constraints.\\nWhile data-driven approaches like reinforcement learning (RL) offer a promising\\navenue for optimizing management policies, their application to infrastructure\\nhas been limited by the lack of suitable simulation environments. We introduce\\nInfraLib, a comprehensive framework for modeling and analyzing infrastructure\\nmanagement problems. InfraLib employs a hierarchical, stochastic approach to\\nrealistically model infrastructure systems and their deterioration. It supports\\npractical functionality such as modeling component unavailability, cyclical\\nbudgets, and catastrophic failures. To facilitate research, InfraLib provides\\ntools for expert data collection, simulation-driven analysis, and\\nvisualization. We demonstrate InfraLib's capabilities through case studies on a\\nreal-world road network and a synthetic benchmark with 100,000 components.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基础设施系统的高效管理对于经济稳定、可持续发展和公共安全至关重要。虽然强化学习(RL)等数据驱动方法为优化管理策略提供了广阔的前景,但由于缺乏合适的仿真环境,它们在基础设施领域的应用受到了限制。我们引入了 InfraLib,这是一个用于建模和分析基础设施管理问题的综合框架。InfraLib 采用分层、随机的方法,对基础设施系统及其恶化情况进行真实建模。它支持实用功能,如模拟组件不可用、周期性预算和灾难性故障。为促进研究,InfraLib 提供了专家数据收集、仿真驱动分析和可视化工具。我们通过对全球道路网络和包含 100,000 个组件的合成基准进行案例研究,展示了 InfraLib 的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
InfraLib: Enabling Reinforcement Learning and Decision Making for Large Scale Infrastructure Management
Efficient management of infrastructure systems is crucial for economic stability, sustainability, and public safety. However, infrastructure management is challenging due to the vast scale of systems, stochastic deterioration of components, partial observability, and resource constraints. While data-driven approaches like reinforcement learning (RL) offer a promising avenue for optimizing management policies, their application to infrastructure has been limited by the lack of suitable simulation environments. We introduce InfraLib, a comprehensive framework for modeling and analyzing infrastructure management problems. InfraLib employs a hierarchical, stochastic approach to realistically model infrastructure systems and their deterioration. It supports practical functionality such as modeling component unavailability, cyclical budgets, and catastrophic failures. To facilitate research, InfraLib provides tools for expert data collection, simulation-driven analysis, and visualization. We demonstrate InfraLib's capabilities through case studies on a real-world road network and a synthetic benchmark with 100,000 components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信