周界识别的顺序决策模型

Ayal Taitler
{"title":"周界识别的顺序决策模型","authors":"Ayal Taitler","doi":"arxiv-2409.02549","DOIUrl":null,"url":null,"abstract":"Perimeter identification involves ascertaining the boundaries of a designated\narea or zone, requiring traffic flow monitoring, control, or optimization.\nVarious methodologies and technologies exist for accurately defining these\nperimeters; however, they often necessitate specialized equipment, precise\nmapping, or comprehensive data for effective problem delineation. In this\nstudy, we propose a sequential decision-making framework for perimeter search,\ndesigned to operate efficiently in real-time and require only publicly\naccessible information. We conceptualize the perimeter search as a game between\na playing agent and an artificial environment, where the agent's objective is\nto identify the optimal perimeter by sequentially improving the current\nperimeter. We detail the model for the game and discuss its adaptability in\ndetermining the definition of an optimal perimeter. Ultimately, we showcase the\nmodel's efficacy through a real-world scenario, highlighting the identification\nof corresponding optimal perimeters.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sequential Decision-Making Model for Perimeter Identification\",\"authors\":\"Ayal Taitler\",\"doi\":\"arxiv-2409.02549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perimeter identification involves ascertaining the boundaries of a designated\\narea or zone, requiring traffic flow monitoring, control, or optimization.\\nVarious methodologies and technologies exist for accurately defining these\\nperimeters; however, they often necessitate specialized equipment, precise\\nmapping, or comprehensive data for effective problem delineation. In this\\nstudy, we propose a sequential decision-making framework for perimeter search,\\ndesigned to operate efficiently in real-time and require only publicly\\naccessible information. We conceptualize the perimeter search as a game between\\na playing agent and an artificial environment, where the agent's objective is\\nto identify the optimal perimeter by sequentially improving the current\\nperimeter. We detail the model for the game and discuss its adaptability in\\ndetermining the definition of an optimal perimeter. Ultimately, we showcase the\\nmodel's efficacy through a real-world scenario, highlighting the identification\\nof corresponding optimal perimeters.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

周界识别涉及确定指定区域或区域的边界,需要对交通流进行监测、控制或优化。目前有各种方法和技术可用于准确定义这些周界;但它们通常需要专业设备、精确绘图或全面数据才能有效地划定问题。在本研究中,我们提出了一种用于周界搜索的顺序决策框架,旨在实时高效地运行,并且只需要公开可获取的信息。我们将周界搜索概念化为游戏代理与人工环境之间的博弈,其中代理的目标是通过依次改进当前周界来确定最佳周界。我们详细介绍了博弈模型,并讨论了该模型在确定最佳周长定义时的适应性。最后,我们通过一个真实世界的场景展示了该模型的功效,并强调了相应最优周长的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sequential Decision-Making Model for Perimeter Identification
Perimeter identification involves ascertaining the boundaries of a designated area or zone, requiring traffic flow monitoring, control, or optimization. Various methodologies and technologies exist for accurately defining these perimeters; however, they often necessitate specialized equipment, precise mapping, or comprehensive data for effective problem delineation. In this study, we propose a sequential decision-making framework for perimeter search, designed to operate efficiently in real-time and require only publicly accessible information. We conceptualize the perimeter search as a game between a playing agent and an artificial environment, where the agent's objective is to identify the optimal perimeter by sequentially improving the current perimeter. We detail the model for the game and discuss its adaptability in determining the definition of an optimal perimeter. Ultimately, we showcase the model's efficacy through a real-world scenario, highlighting the identification of corresponding optimal perimeters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信