动态知识图谱的神经符号方法

Mehwish Alam, Genet Asefa Gesese, Pierre-Henri Paris
{"title":"动态知识图谱的神经符号方法","authors":"Mehwish Alam, Genet Asefa Gesese, Pierre-Henri Paris","doi":"arxiv-2409.04572","DOIUrl":null,"url":null,"abstract":"Knowledge graphs (KGs) have recently been used for many tools and\napplications, making them rich resources in structured format. However, in the\nreal world, KGs grow due to the additions of new knowledge in the form of\nentities and relations, making these KGs dynamic. This chapter formally defines\nseveral types of dynamic KGs and summarizes how these KGs can be represented.\nAdditionally, many neurosymbolic methods have been proposed for learning\nrepresentations over static KGs for several tasks such as KG completion and\nentity alignment. This chapter further focuses on neurosymbolic methods for\ndynamic KGs with or without temporal information. More specifically, it\nprovides an insight into neurosymbolic methods for dynamic (temporal or\nnon-temporal) KG completion and entity alignment tasks. It further discusses\nthe challenges of current approaches and provides some future directions.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurosymbolic Methods for Dynamic Knowledge Graphs\",\"authors\":\"Mehwish Alam, Genet Asefa Gesese, Pierre-Henri Paris\",\"doi\":\"arxiv-2409.04572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graphs (KGs) have recently been used for many tools and\\napplications, making them rich resources in structured format. However, in the\\nreal world, KGs grow due to the additions of new knowledge in the form of\\nentities and relations, making these KGs dynamic. This chapter formally defines\\nseveral types of dynamic KGs and summarizes how these KGs can be represented.\\nAdditionally, many neurosymbolic methods have been proposed for learning\\nrepresentations over static KGs for several tasks such as KG completion and\\nentity alignment. This chapter further focuses on neurosymbolic methods for\\ndynamic KGs with or without temporal information. More specifically, it\\nprovides an insight into neurosymbolic methods for dynamic (temporal or\\nnon-temporal) KG completion and entity alignment tasks. It further discusses\\nthe challenges of current approaches and provides some future directions.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

知识图谱(KGs)近来已被用于许多工具和应用中,成为结构化格式的丰富资源。然而,在现实世界中,由于实体和关系形式的新知识的加入,知识图谱会不断增长,从而使这些知识图谱成为动态图谱。本章正式定义了几种类型的动态 KG,并总结了这些 KG 的表示方法。此外,许多神经符号方法已被提出,用于学习静态 KG 的表示方法,以完成 KG 补充和实体对齐等任务。本章将进一步关注用于有时间信息或无时间信息动态 KG 的神经符号方法。更具体地说,本章深入探讨了用于动态(时态或非时态)KG补全和实体配准任务的神经符号方法。它进一步讨论了当前方法所面临的挑战,并提供了一些未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurosymbolic Methods for Dynamic Knowledge Graphs
Knowledge graphs (KGs) have recently been used for many tools and applications, making them rich resources in structured format. However, in the real world, KGs grow due to the additions of new knowledge in the form of entities and relations, making these KGs dynamic. This chapter formally defines several types of dynamic KGs and summarizes how these KGs can be represented. Additionally, many neurosymbolic methods have been proposed for learning representations over static KGs for several tasks such as KG completion and entity alignment. This chapter further focuses on neurosymbolic methods for dynamic KGs with or without temporal information. More specifically, it provides an insight into neurosymbolic methods for dynamic (temporal or non-temporal) KG completion and entity alignment tasks. It further discusses the challenges of current approaches and provides some future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信