TRACE-cs:课程安排问题中对比解释的可信推理

Stylianos Loukas Vasileiou, William Yeoh
{"title":"TRACE-cs:课程安排问题中对比解释的可信推理","authors":"Stylianos Loukas Vasileiou, William Yeoh","doi":"arxiv-2409.03671","DOIUrl":null,"url":null,"abstract":"We present TRACE-cs, a novel hybrid system that combines symbolic reasoning\nwith large language models (LLMs) to address contrastive queries in scheduling\nproblems. TRACE-cs leverages SAT solving techniques to encode scheduling\nconstraints and generate explanations for user queries, while utilizing an LLM\nto process the user queries into logical clauses as well as refine the\nexplanations generated by the symbolic solver to natural language sentences. By\nintegrating these components, our approach demonstrates the potential of\ncombining symbolic methods with LLMs to create explainable AI agents with\ncorrectness guarantees.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRACE-cs: Trustworthy Reasoning for Contrastive Explanations in Course Scheduling Problems\",\"authors\":\"Stylianos Loukas Vasileiou, William Yeoh\",\"doi\":\"arxiv-2409.03671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present TRACE-cs, a novel hybrid system that combines symbolic reasoning\\nwith large language models (LLMs) to address contrastive queries in scheduling\\nproblems. TRACE-cs leverages SAT solving techniques to encode scheduling\\nconstraints and generate explanations for user queries, while utilizing an LLM\\nto process the user queries into logical clauses as well as refine the\\nexplanations generated by the symbolic solver to natural language sentences. By\\nintegrating these components, our approach demonstrates the potential of\\ncombining symbolic methods with LLMs to create explainable AI agents with\\ncorrectness guarantees.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 TRACE-cs 是一种新型混合系统,它将符号推理与大型语言模型(LLM)相结合,用于解决调度问题中的对比查询。TRACE-cs 利用 SAT 求解技术来编码调度约束并为用户查询生成解释,同时利用 LLM 将用户查询处理为逻辑分句,并将符号求解器生成的解释细化为自然语言句子。通过整合这些组件,我们的方法展示了将符号方法与 LLM 结合起来创建具有正确性保证的可解释人工智能代理的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TRACE-cs: Trustworthy Reasoning for Contrastive Explanations in Course Scheduling Problems
We present TRACE-cs, a novel hybrid system that combines symbolic reasoning with large language models (LLMs) to address contrastive queries in scheduling problems. TRACE-cs leverages SAT solving techniques to encode scheduling constraints and generate explanations for user queries, while utilizing an LLM to process the user queries into logical clauses as well as refine the explanations generated by the symbolic solver to natural language sentences. By integrating these components, our approach demonstrates the potential of combining symbolic methods with LLMs to create explainable AI agents with correctness guarantees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信