Knapsack约束下非单调次模态最大化的改进并行算法

Tan D. Tran, Canh V. Pham, Dung T. K. Ha, Phuong N. H. Pham
{"title":"Knapsack约束下非单调次模态最大化的改进并行算法","authors":"Tan D. Tran, Canh V. Pham, Dung T. K. Ha, Phuong N. H. Pham","doi":"arxiv-2409.04415","DOIUrl":null,"url":null,"abstract":"This work proposes an efficient parallel algorithm for non-monotone\nsubmodular maximization under a knapsack constraint problem over the ground set\nof size $n$. Our algorithm improves the best approximation factor of the\nexisting parallel one from $8+\\epsilon$ to $7+\\epsilon$ with $O(\\log n)$\nadaptive complexity. The key idea of our approach is to create a new alternate threshold\nalgorithmic framework. This strategy alternately constructs two disjoint\ncandidate solutions within a constant number of sequence rounds. Then, the\nalgorithm boosts solution quality without sacrificing the adaptive complexity.\nExtensive experimental studies on three applications, Revenue Maximization,\nImage Summarization, and Maximum Weighted Cut, show that our algorithm not only\nsignificantly increases solution quality but also requires comparative\nadaptivity to state-of-the-art algorithms.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Parallel Algorithm for Non-Monotone Submodular Maximization under Knapsack Constraint\",\"authors\":\"Tan D. Tran, Canh V. Pham, Dung T. K. Ha, Phuong N. H. Pham\",\"doi\":\"arxiv-2409.04415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes an efficient parallel algorithm for non-monotone\\nsubmodular maximization under a knapsack constraint problem over the ground set\\nof size $n$. Our algorithm improves the best approximation factor of the\\nexisting parallel one from $8+\\\\epsilon$ to $7+\\\\epsilon$ with $O(\\\\log n)$\\nadaptive complexity. The key idea of our approach is to create a new alternate threshold\\nalgorithmic framework. This strategy alternately constructs two disjoint\\ncandidate solutions within a constant number of sequence rounds. Then, the\\nalgorithm boosts solution quality without sacrificing the adaptive complexity.\\nExtensive experimental studies on three applications, Revenue Maximization,\\nImage Summarization, and Maximum Weighted Cut, show that our algorithm not only\\nsignificantly increases solution quality but also requires comparative\\nadaptivity to state-of-the-art algorithms.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种高效的并行算法,用于在大小为 $n$ 的地面集合上的 knapsack 约束问题下的非单调次模态最大化。我们的算法将现有并行算法的最佳近似系数从 $8+\epsilon$ 提高到 $7+\epsilon$ ,自适应复杂度为 $O(\log n)$。我们的方法的关键思路是创建一个新的交替阈值算法框架。该策略在一定数量的序列轮次内交替构建两个不相交的候选解。对收入最大化、图像汇总和最大加权剪切这三个应用的广泛实验研究表明,我们的算法不仅显著提高了解的质量,而且与最先进的算法相比具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Parallel Algorithm for Non-Monotone Submodular Maximization under Knapsack Constraint
This work proposes an efficient parallel algorithm for non-monotone submodular maximization under a knapsack constraint problem over the ground set of size $n$. Our algorithm improves the best approximation factor of the existing parallel one from $8+\epsilon$ to $7+\epsilon$ with $O(\log n)$ adaptive complexity. The key idea of our approach is to create a new alternate threshold algorithmic framework. This strategy alternately constructs two disjoint candidate solutions within a constant number of sequence rounds. Then, the algorithm boosts solution quality without sacrificing the adaptive complexity. Extensive experimental studies on three applications, Revenue Maximization, Image Summarization, and Maximum Weighted Cut, show that our algorithm not only significantly increases solution quality but also requires comparative adaptivity to state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信