通过曲线小波变换合成各向异性的分数布朗场

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
M. V. C. Henriques, F. E. A. Leite
{"title":"通过曲线小波变换合成各向异性的分数布朗场","authors":"M. V. C. Henriques,&nbsp;F. E. A. Leite","doi":"10.1007/s13538-024-01580-1","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed model employs curvelet-based techniques to generate anisotropic Fractional Brownian Fields, simulating systems with orientation-dependent self-similar properties. Curvelets are a mathematical tool that allows for an efficient representation of data with edges and other anisotropic singularities, being essential for capturing the directional complexity in the self-similar properties of the modeled systems. The synthesis procedure involves generating coefficients in curvelet space with a zero-mean Gaussian distribution. This approach is tailored to depict the stochastic behavior of natural systems, particularly in scenarios where angular distributions of correlations are critical. The main contribution of this paper is presenting a novel method for generating 2-D anisotropic Fractional Brownian Fields (AFBFs) using the Curvelet Transform, demonstrating the Curvelet Transform’s efficiency in modeling anisotropic properties. Potential applications include modeling heterogeneous geological structures, anisotropic materials, and complex disordered media.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"54 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Fractional Brownian Field Synthesis via Curvelet Transform\",\"authors\":\"M. V. C. Henriques,&nbsp;F. E. A. Leite\",\"doi\":\"10.1007/s13538-024-01580-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proposed model employs curvelet-based techniques to generate anisotropic Fractional Brownian Fields, simulating systems with orientation-dependent self-similar properties. Curvelets are a mathematical tool that allows for an efficient representation of data with edges and other anisotropic singularities, being essential for capturing the directional complexity in the self-similar properties of the modeled systems. The synthesis procedure involves generating coefficients in curvelet space with a zero-mean Gaussian distribution. This approach is tailored to depict the stochastic behavior of natural systems, particularly in scenarios where angular distributions of correlations are critical. The main contribution of this paper is presenting a novel method for generating 2-D anisotropic Fractional Brownian Fields (AFBFs) using the Curvelet Transform, demonstrating the Curvelet Transform’s efficiency in modeling anisotropic properties. Potential applications include modeling heterogeneous geological structures, anisotropic materials, and complex disordered media.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"54 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-024-01580-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-024-01580-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

所提出的模型采用了基于小曲线的技术来生成各向异性的分数布朗场,模拟具有方向依赖性自相似特性的系统。小曲线是一种数学工具,可以有效地表示具有边缘和其他各向异性奇异点的数据,对于捕捉模型系统自相似特性中的方向复杂性至关重要。合成过程包括在曲线空间生成零均值高斯分布的系数。这种方法专门用于描述自然系统的随机行为,尤其是在相关性的角度分布至关重要的情况下。本文的主要贡献在于提出了一种利用曲线小波变换生成二维各向异性分数布朗场(AFBF)的新方法,展示了曲线小波变换在模拟各向异性特性方面的效率。其潜在应用包括异质地质结构、各向异性材料和复杂无序介质建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anisotropic Fractional Brownian Field Synthesis via Curvelet Transform

Anisotropic Fractional Brownian Field Synthesis via Curvelet Transform

Anisotropic Fractional Brownian Field Synthesis via Curvelet Transform

The proposed model employs curvelet-based techniques to generate anisotropic Fractional Brownian Fields, simulating systems with orientation-dependent self-similar properties. Curvelets are a mathematical tool that allows for an efficient representation of data with edges and other anisotropic singularities, being essential for capturing the directional complexity in the self-similar properties of the modeled systems. The synthesis procedure involves generating coefficients in curvelet space with a zero-mean Gaussian distribution. This approach is tailored to depict the stochastic behavior of natural systems, particularly in scenarios where angular distributions of correlations are critical. The main contribution of this paper is presenting a novel method for generating 2-D anisotropic Fractional Brownian Fields (AFBFs) using the Curvelet Transform, demonstrating the Curvelet Transform’s efficiency in modeling anisotropic properties. Potential applications include modeling heterogeneous geological structures, anisotropic materials, and complex disordered media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信