Gang Zheng, Bing Qi, Wenyi Zhang, Shumin Song, Yu Wu, Qian Qian Xia, Yunxia Wang
{"title":"菠菜种子离散元素模拟参数的校准和测试","authors":"Gang Zheng, Bing Qi, Wenyi Zhang, Shumin Song, Yu Wu, Qian Qian Xia, Yunxia Wang","doi":"10.1007/s40571-024-00812-0","DOIUrl":null,"url":null,"abstract":"<p>The accuracy of simulation parameters for spinach sowing process was enhanced by establishing the seed simulation model based on the intrinsic parameters of spinach seeds using the Hertz–Mindlin model. Calibration of simulation parameters between spinach seeds and contact materials (ABS resins and stainless steel) was performed using free-fall collision method, inclined plane sliding method, and inclined plane rolling method. The results indicated: coefficients of restitution, static friction coefficients, and rolling friction coefficients between spinach and ABS resins were 0.310, 0.467 and 0.045, respectively. Coefficients of restitution, static friction coefficients and rolling friction coefficients between spinach and stainless steel were 0.346, 0.505 and 0.047, respectively. Considering inter-seed contact parameters, a study was conducted using the relative error between measured repose angle and simulated repose angle as the indicator. This involved steepest ascent experiment and three-factor five-level rotational combined design experiment with the optimisation goal of minimising relative error. Through optimal analysis of test data, the following results were obtained: coefficients of restitution, static friction coefficients, and rolling friction coefficients between spinach seeds were found to be 0.47, 0.37 and 0.04, respectively. Calibration results were validated through sowing verification experiments, demonstrating that the qualified rate, multiple rate and missing rate of both simulation and actual tests were less than 5.8%, verifying the reliability of the calibration results. The research findings can serve as a theoretical reference for the design and simulation optimisation of spinach sowing devices.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"3 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration and testing of discrete element simulation parameters for spinach seeds\",\"authors\":\"Gang Zheng, Bing Qi, Wenyi Zhang, Shumin Song, Yu Wu, Qian Qian Xia, Yunxia Wang\",\"doi\":\"10.1007/s40571-024-00812-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The accuracy of simulation parameters for spinach sowing process was enhanced by establishing the seed simulation model based on the intrinsic parameters of spinach seeds using the Hertz–Mindlin model. Calibration of simulation parameters between spinach seeds and contact materials (ABS resins and stainless steel) was performed using free-fall collision method, inclined plane sliding method, and inclined plane rolling method. The results indicated: coefficients of restitution, static friction coefficients, and rolling friction coefficients between spinach and ABS resins were 0.310, 0.467 and 0.045, respectively. Coefficients of restitution, static friction coefficients and rolling friction coefficients between spinach and stainless steel were 0.346, 0.505 and 0.047, respectively. Considering inter-seed contact parameters, a study was conducted using the relative error between measured repose angle and simulated repose angle as the indicator. This involved steepest ascent experiment and three-factor five-level rotational combined design experiment with the optimisation goal of minimising relative error. Through optimal analysis of test data, the following results were obtained: coefficients of restitution, static friction coefficients, and rolling friction coefficients between spinach seeds were found to be 0.47, 0.37 and 0.04, respectively. Calibration results were validated through sowing verification experiments, demonstrating that the qualified rate, multiple rate and missing rate of both simulation and actual tests were less than 5.8%, verifying the reliability of the calibration results. The research findings can serve as a theoretical reference for the design and simulation optimisation of spinach sowing devices.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00812-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00812-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Calibration and testing of discrete element simulation parameters for spinach seeds
The accuracy of simulation parameters for spinach sowing process was enhanced by establishing the seed simulation model based on the intrinsic parameters of spinach seeds using the Hertz–Mindlin model. Calibration of simulation parameters between spinach seeds and contact materials (ABS resins and stainless steel) was performed using free-fall collision method, inclined plane sliding method, and inclined plane rolling method. The results indicated: coefficients of restitution, static friction coefficients, and rolling friction coefficients between spinach and ABS resins were 0.310, 0.467 and 0.045, respectively. Coefficients of restitution, static friction coefficients and rolling friction coefficients between spinach and stainless steel were 0.346, 0.505 and 0.047, respectively. Considering inter-seed contact parameters, a study was conducted using the relative error between measured repose angle and simulated repose angle as the indicator. This involved steepest ascent experiment and three-factor five-level rotational combined design experiment with the optimisation goal of minimising relative error. Through optimal analysis of test data, the following results were obtained: coefficients of restitution, static friction coefficients, and rolling friction coefficients between spinach seeds were found to be 0.47, 0.37 and 0.04, respectively. Calibration results were validated through sowing verification experiments, demonstrating that the qualified rate, multiple rate and missing rate of both simulation and actual tests were less than 5.8%, verifying the reliability of the calibration results. The research findings can serve as a theoretical reference for the design and simulation optimisation of spinach sowing devices.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.