用不同的处理工艺对沙漠沙地进行生物固化,防止风引起的侵蚀

IF 2.8 3区 农林科学 Q3 ENVIRONMENTAL SCIENCES
Yang Liu, Yaqing Gao, Bin Liu, Xinwen Cao, Jiawei Chen
{"title":"用不同的处理工艺对沙漠沙地进行生物固化,防止风引起的侵蚀","authors":"Yang Liu, Yaqing Gao, Bin Liu, Xinwen Cao, Jiawei Chen","doi":"10.1007/s11368-024-03888-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Wind-induced erosion is a serious problem that yields soil degradation and environmental pollution. Biocementation technologies have shown potential for sand fixation and wind erosion control in deserts and arid regions. The topic of this study is to investigate the effectiveness of biocementation against wind-induced erosion with different treatment processes.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Biocementation was achieved through soybean-urease induced calcium carbonate precipitation. Three different volumes of treatment solution were used to treat sand specimens by spraying, mixing and the combination methods in this study. The characteristics of sprayed and mixed crust were shown, and the properties of all the biotreated specimens including CaCO<sub>3</sub> distribution, wind erosion rate, and penetration resistance were measured.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The carbonate content in the soil increased with the amount of treatment solution. At the same dosage, the spraying method concentrated 1.0%-1.4% CaCO<sub>3</sub> in the surface soil, while the mixing method generated 0.8% CaCO<sub>3</sub> in a uniform spatial distribution. The top-concentrated CaCO<sub>3</sub> resulted in a lower initial wind erosion rate of the sprayed specimen. The overall reinforcement of the soil by the mixing method produced higher penetration resistance and inhibited the development of wind erosion. The combination of the two methods increased penetration resistance to 200 N and reduced the wind erosion rate to almost 0 g·m<sup>−2</sup>·min<sup>−1</sup>.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The spraying and mixing methods induced different distribution patterns of CaCO<sub>3</sub> precipitations in soil, leading to varying biocementation effectiveness. To resist severe and continuous wind-induced erosion, a combination of the two methods can be considered to improve the uniformity and strength of biocementation within a certain depth of the soil.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"63 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biocementation for desert sand against wind-induced erosion with different treatment processes\",\"authors\":\"Yang Liu, Yaqing Gao, Bin Liu, Xinwen Cao, Jiawei Chen\",\"doi\":\"10.1007/s11368-024-03888-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Wind-induced erosion is a serious problem that yields soil degradation and environmental pollution. Biocementation technologies have shown potential for sand fixation and wind erosion control in deserts and arid regions. The topic of this study is to investigate the effectiveness of biocementation against wind-induced erosion with different treatment processes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Biocementation was achieved through soybean-urease induced calcium carbonate precipitation. Three different volumes of treatment solution were used to treat sand specimens by spraying, mixing and the combination methods in this study. The characteristics of sprayed and mixed crust were shown, and the properties of all the biotreated specimens including CaCO<sub>3</sub> distribution, wind erosion rate, and penetration resistance were measured.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The carbonate content in the soil increased with the amount of treatment solution. At the same dosage, the spraying method concentrated 1.0%-1.4% CaCO<sub>3</sub> in the surface soil, while the mixing method generated 0.8% CaCO<sub>3</sub> in a uniform spatial distribution. The top-concentrated CaCO<sub>3</sub> resulted in a lower initial wind erosion rate of the sprayed specimen. The overall reinforcement of the soil by the mixing method produced higher penetration resistance and inhibited the development of wind erosion. The combination of the two methods increased penetration resistance to 200 N and reduced the wind erosion rate to almost 0 g·m<sup>−2</sup>·min<sup>−1</sup>.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The spraying and mixing methods induced different distribution patterns of CaCO<sub>3</sub> precipitations in soil, leading to varying biocementation effectiveness. To resist severe and continuous wind-induced erosion, a combination of the two methods can be considered to improve the uniformity and strength of biocementation within a certain depth of the soil.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03888-6\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03888-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的风蚀是一个严重的问题,会导致土壤退化和环境污染。生物固沙技术在沙漠和干旱地区的固沙和风蚀控制方面已显示出潜力。本研究的主题是调查不同处理工艺下生物固沙对风蚀的有效性。本研究使用了三种不同体积的处理液,分别以喷洒法、混合法和组合法处理砂试样。结果土壤中的碳酸盐含量随处理液用量的增加而增加。在相同剂量下,喷洒法在表层土壤中浓缩了 1.0%-1.4% 的 CaCO3,而混合法产生了 0.8% 的 CaCO3,且空间分布均匀。顶部浓缩的 CaCO3 使喷洒试样的初始风蚀率更低。混合法对土壤的整体加固产生了更高的抗渗透性,抑制了风蚀的发展。两种方法结合使用可将抗穿透力提高到 200 N,并将风蚀率降低到近 0 g-m-2-min-1。为抵御严重和持续的风蚀,可考虑将两种方法结合使用,以提高土壤一定深度内生物固结的均匀性和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biocementation for desert sand against wind-induced erosion with different treatment processes

Biocementation for desert sand against wind-induced erosion with different treatment processes

Purpose

Wind-induced erosion is a serious problem that yields soil degradation and environmental pollution. Biocementation technologies have shown potential for sand fixation and wind erosion control in deserts and arid regions. The topic of this study is to investigate the effectiveness of biocementation against wind-induced erosion with different treatment processes.

Methods

Biocementation was achieved through soybean-urease induced calcium carbonate precipitation. Three different volumes of treatment solution were used to treat sand specimens by spraying, mixing and the combination methods in this study. The characteristics of sprayed and mixed crust were shown, and the properties of all the biotreated specimens including CaCO3 distribution, wind erosion rate, and penetration resistance were measured.

Results

The carbonate content in the soil increased with the amount of treatment solution. At the same dosage, the spraying method concentrated 1.0%-1.4% CaCO3 in the surface soil, while the mixing method generated 0.8% CaCO3 in a uniform spatial distribution. The top-concentrated CaCO3 resulted in a lower initial wind erosion rate of the sprayed specimen. The overall reinforcement of the soil by the mixing method produced higher penetration resistance and inhibited the development of wind erosion. The combination of the two methods increased penetration resistance to 200 N and reduced the wind erosion rate to almost 0 g·m−2·min−1.

Conclusion

The spraying and mixing methods induced different distribution patterns of CaCO3 precipitations in soil, leading to varying biocementation effectiveness. To resist severe and continuous wind-induced erosion, a combination of the two methods can be considered to improve the uniformity and strength of biocementation within a certain depth of the soil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soils and Sediments
Journal of Soils and Sediments 环境科学-土壤科学
CiteScore
7.00
自引率
5.60%
发文量
256
审稿时长
3.5 months
期刊介绍: The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信