Mariana Carmona‐Baez, Alexandra M. Schmidt, Shirin Golchi, David Buckeridge
{"title":"魁北克 COVID-19 引起的住院和入住重症监护室的联合时间模型","authors":"Mariana Carmona‐Baez, Alexandra M. Schmidt, Shirin Golchi, David Buckeridge","doi":"10.1002/sta4.70000","DOIUrl":null,"url":null,"abstract":"Infectious respiratory diseases have been of interest in recent years for the great burden they place on health systems, for instance, the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) that caused the global COVID‐19 pandemic. As many of these diseases might require hospitalization and even intensive care unit (ICU) admission, understanding the joint dynamics of hospitalizations and ICU admissions across time and different groups of the population remains of great importance. We aim to understand the joint evolution of hospital and ICU admissions given COVID‐19 test‐positive cases in the province of Quebec, Canada. We obtain the daily counts, by age group, on the number of confirmed COVID‐19 cases, the number of hospitalizations and the number of ICU admissions due to COVID‐19, from March 2020 through October 2021 in Quebec. We propose a joint Bayesian generalized dynamic linear model for the number of hospitalizations and ICU admissions to study their temporal trends and possible associations with sex and age group. Additionally, we use transfer functions to investigate if there is a memory effect of the number of cases on hospitalizations across the different age groups. The results suggest that there is a clear distinction in the patterns of hospitalizations and ICU admissions across age groups and that the number of cases has a persistent effect on the rate of hospitalization.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Joint Temporal Model for Hospitalizations and ICU Admissions Due to COVID‐19 in Quebec\",\"authors\":\"Mariana Carmona‐Baez, Alexandra M. Schmidt, Shirin Golchi, David Buckeridge\",\"doi\":\"10.1002/sta4.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infectious respiratory diseases have been of interest in recent years for the great burden they place on health systems, for instance, the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) that caused the global COVID‐19 pandemic. As many of these diseases might require hospitalization and even intensive care unit (ICU) admission, understanding the joint dynamics of hospitalizations and ICU admissions across time and different groups of the population remains of great importance. We aim to understand the joint evolution of hospital and ICU admissions given COVID‐19 test‐positive cases in the province of Quebec, Canada. We obtain the daily counts, by age group, on the number of confirmed COVID‐19 cases, the number of hospitalizations and the number of ICU admissions due to COVID‐19, from March 2020 through October 2021 in Quebec. We propose a joint Bayesian generalized dynamic linear model for the number of hospitalizations and ICU admissions to study their temporal trends and possible associations with sex and age group. Additionally, we use transfer functions to investigate if there is a memory effect of the number of cases on hospitalizations across the different age groups. The results suggest that there is a clear distinction in the patterns of hospitalizations and ICU admissions across age groups and that the number of cases has a persistent effect on the rate of hospitalization.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.70000\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.70000","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Joint Temporal Model for Hospitalizations and ICU Admissions Due to COVID‐19 in Quebec
Infectious respiratory diseases have been of interest in recent years for the great burden they place on health systems, for instance, the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) that caused the global COVID‐19 pandemic. As many of these diseases might require hospitalization and even intensive care unit (ICU) admission, understanding the joint dynamics of hospitalizations and ICU admissions across time and different groups of the population remains of great importance. We aim to understand the joint evolution of hospital and ICU admissions given COVID‐19 test‐positive cases in the province of Quebec, Canada. We obtain the daily counts, by age group, on the number of confirmed COVID‐19 cases, the number of hospitalizations and the number of ICU admissions due to COVID‐19, from March 2020 through October 2021 in Quebec. We propose a joint Bayesian generalized dynamic linear model for the number of hospitalizations and ICU admissions to study their temporal trends and possible associations with sex and age group. Additionally, we use transfer functions to investigate if there is a memory effect of the number of cases on hospitalizations across the different age groups. The results suggest that there is a clear distinction in the patterns of hospitalizations and ICU admissions across age groups and that the number of cases has a persistent effect on the rate of hospitalization.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.