遥感土壤水分数据集融合方法的比较分析:新颖的 LSTM 方法与广泛使用的三重定位技术的比较

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Haojin Zhao;Carsten Montzka;Harry Vereecken;Harrie-Jan Hendricks Franssen
{"title":"遥感土壤水分数据集融合方法的比较分析:新颖的 LSTM 方法与广泛使用的三重定位技术的比较","authors":"Haojin Zhao;Carsten Montzka;Harry Vereecken;Harrie-Jan Hendricks Franssen","doi":"10.1109/JSTARS.2024.3455549","DOIUrl":null,"url":null,"abstract":"Microwave remote sensing technology has emerged to provide valuable products to monitor and assess soil moisture content at regional or global scales. However, each soil moisture product exhibits different advantages and shortcomings. Data fusion could help improve accuracy by merging information from different sources. In this research, a traditional triple collocation (TC) based method and a novel long short term memory network (LSTM) are used to merge soil moisture products from the soil moisture active passive mission, Advanced Microwave Scanning Radiometer 2 (AMSR2), and The Advanced SCATterometer for a study area located in western Europe. This research reveals that the LSTM outperforms the traditional TC based method for data fusion. The study identifies that both climate forcing and physiographic attributes significantly influence the spatial and temporal variations observed in the LSTM merging scheme. Consequently, the study highlights the considerable potential of the LSTM method for large-scale integration of remote sensing soil moisture data.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669050","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analysis of Remote Sensing Soil Moisture Datasets Fusion Methods: Novel LSTM Approach Versus Widely Used Triple Collocation Technique\",\"authors\":\"Haojin Zhao;Carsten Montzka;Harry Vereecken;Harrie-Jan Hendricks Franssen\",\"doi\":\"10.1109/JSTARS.2024.3455549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave remote sensing technology has emerged to provide valuable products to monitor and assess soil moisture content at regional or global scales. However, each soil moisture product exhibits different advantages and shortcomings. Data fusion could help improve accuracy by merging information from different sources. In this research, a traditional triple collocation (TC) based method and a novel long short term memory network (LSTM) are used to merge soil moisture products from the soil moisture active passive mission, Advanced Microwave Scanning Radiometer 2 (AMSR2), and The Advanced SCATterometer for a study area located in western Europe. This research reveals that the LSTM outperforms the traditional TC based method for data fusion. The study identifies that both climate forcing and physiographic attributes significantly influence the spatial and temporal variations observed in the LSTM merging scheme. Consequently, the study highlights the considerable potential of the LSTM method for large-scale integration of remote sensing soil moisture data.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669050/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669050/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微波遥感技术的出现为在区域或全球范围内监测和评估土壤水分含量提供了宝贵的产品。然而,每种土壤水分产品都有不同的优点和缺点。数据融合可通过合并来自不同来源的信息来帮助提高精度。本研究采用传统的三重定位(TC)方法和新型的长短期记忆网络(LSTM)来合并来自土壤水分主动被动任务、高级微波扫描辐射计 2(AMSR2)和高级 SCATterometer 的土壤水分产品,研究区域位于欧洲西部。这项研究表明,在数据融合方面,LSTM 优于传统的基于 TC 的方法。研究发现,气候强迫和地貌属性对 LSTM 合并方案中观测到的空间和时间变化有显著影响。因此,该研究强调了 LSTM 方法在大规模整合遥感土壤水分数据方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Analysis of Remote Sensing Soil Moisture Datasets Fusion Methods: Novel LSTM Approach Versus Widely Used Triple Collocation Technique
Microwave remote sensing technology has emerged to provide valuable products to monitor and assess soil moisture content at regional or global scales. However, each soil moisture product exhibits different advantages and shortcomings. Data fusion could help improve accuracy by merging information from different sources. In this research, a traditional triple collocation (TC) based method and a novel long short term memory network (LSTM) are used to merge soil moisture products from the soil moisture active passive mission, Advanced Microwave Scanning Radiometer 2 (AMSR2), and The Advanced SCATterometer for a study area located in western Europe. This research reveals that the LSTM outperforms the traditional TC based method for data fusion. The study identifies that both climate forcing and physiographic attributes significantly influence the spatial and temporal variations observed in the LSTM merging scheme. Consequently, the study highlights the considerable potential of the LSTM method for large-scale integration of remote sensing soil moisture data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信