Ragıp Yıldırım, Kazım Kumaş, Ali Akyüz, Azim Doğuş Tuncer
{"title":"评估在蒸汽压缩制冷系统中使用 R410A 和 R463A 的性能:能效分析和环境影响指数(EII)评估","authors":"Ragıp Yıldırım, Kazım Kumaş, Ali Akyüz, Azim Doğuş Tuncer","doi":"10.1615/heattransres.2024054447","DOIUrl":null,"url":null,"abstract":"A thorough evaluation of the new generation of refrigerants before their application in vapor compression cooling cycles enables prudent action to be taken. This study presents a comparative analysis between R463A and R410A in vapor compression refrigeration cycles. R463A exhibits notable advantages: it demonstrates higher mass flow rates owing to its elevated density at -25°C evaporator temperature, resulting in superior cooling capacities at 40°C and 45°C. However, this superiority comes at the cost of higher energy demand than R410A, which is evident in its increased energy consumption at these temperatures. Despite its enhanced cooling capacity, R463A displays slightly lower COP attributed to its higher compressor energy utilization. Moreover, both refrigerants exhibit increased exergy destruction with rising temperatures, consequently impacting exergy efficiency, which is slightly lower for R463A due to its elevated exergy destruction rates. Environmental impact analyses also highlight R463A's consistently higher environmental index than R410A across varied temperatures. This comprehensive evaluation contributes insights into R463A's performance as an alternative refrigerant to R410A in vapor compression systems.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the performance of using R410A and R463A in a vapor compression refrigeration system: Energetic-exergetic analysis and Environmental Impact Index (EII) assessmen\",\"authors\":\"Ragıp Yıldırım, Kazım Kumaş, Ali Akyüz, Azim Doğuş Tuncer\",\"doi\":\"10.1615/heattransres.2024054447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thorough evaluation of the new generation of refrigerants before their application in vapor compression cooling cycles enables prudent action to be taken. This study presents a comparative analysis between R463A and R410A in vapor compression refrigeration cycles. R463A exhibits notable advantages: it demonstrates higher mass flow rates owing to its elevated density at -25°C evaporator temperature, resulting in superior cooling capacities at 40°C and 45°C. However, this superiority comes at the cost of higher energy demand than R410A, which is evident in its increased energy consumption at these temperatures. Despite its enhanced cooling capacity, R463A displays slightly lower COP attributed to its higher compressor energy utilization. Moreover, both refrigerants exhibit increased exergy destruction with rising temperatures, consequently impacting exergy efficiency, which is slightly lower for R463A due to its elevated exergy destruction rates. Environmental impact analyses also highlight R463A's consistently higher environmental index than R410A across varied temperatures. This comprehensive evaluation contributes insights into R463A's performance as an alternative refrigerant to R410A in vapor compression systems.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/heattransres.2024054447\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024054447","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Evaluation of the performance of using R410A and R463A in a vapor compression refrigeration system: Energetic-exergetic analysis and Environmental Impact Index (EII) assessmen
A thorough evaluation of the new generation of refrigerants before their application in vapor compression cooling cycles enables prudent action to be taken. This study presents a comparative analysis between R463A and R410A in vapor compression refrigeration cycles. R463A exhibits notable advantages: it demonstrates higher mass flow rates owing to its elevated density at -25°C evaporator temperature, resulting in superior cooling capacities at 40°C and 45°C. However, this superiority comes at the cost of higher energy demand than R410A, which is evident in its increased energy consumption at these temperatures. Despite its enhanced cooling capacity, R463A displays slightly lower COP attributed to its higher compressor energy utilization. Moreover, both refrigerants exhibit increased exergy destruction with rising temperatures, consequently impacting exergy efficiency, which is slightly lower for R463A due to its elevated exergy destruction rates. Environmental impact analyses also highlight R463A's consistently higher environmental index than R410A across varied temperatures. This comprehensive evaluation contributes insights into R463A's performance as an alternative refrigerant to R410A in vapor compression systems.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.