{"title":"从晶相分析研究锌延缓水泥水化和铝酸钠加速硬化的机理","authors":"Kazuo Yamada, Tsuneki Ichikawa, Hiroyuki Arai, Takahito Yasukochi, Kazuto Endo","doi":"10.1007/s10163-024-02059-6","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc was focused on as an element causing hardening retardation due to delayed hydration of Ordinary Portland Cement (OPC), and its hardening inhibitory effect and the mechanism of hardening enhancement by sodium aluminate were analyzed by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The addition of zinc hydroxide retarded hardening at more than 0.3 mass%, as previously reported, and zinc produced calcium zincate hydrates (qatranaite) and inhibited the hydration of tricalcium silicate (C<sub>3</sub>S), the main component of hydration of OPC. After the zinc had been fully consumed in qatranaite formation, C<sub>3</sub>S started normal hydration. The addition of sodium aluminate caused earlier re-hydration of C<sub>3</sub>S, which was inhibited by hydration, as the hydrates produced appeared to consume zincate anions. The rapid setting effect of sodium aluminate addition was also delayed by zinc hydroxide, but it was estimated that the addition of the same amount of zinc would ensure initial strength through early formation of hydrocalumite. In the longer term, strength was considered to be more enhanced by the onset of C<sub>3</sub>S hydration.</p></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"26 6","pages":"3596 - 3608"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10163-024-02059-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Study on the mechanisms of retardation of cement hydration by zinc and acceleration of hardening by sodium aluminate from crystallographic phase analysis\",\"authors\":\"Kazuo Yamada, Tsuneki Ichikawa, Hiroyuki Arai, Takahito Yasukochi, Kazuto Endo\",\"doi\":\"10.1007/s10163-024-02059-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc was focused on as an element causing hardening retardation due to delayed hydration of Ordinary Portland Cement (OPC), and its hardening inhibitory effect and the mechanism of hardening enhancement by sodium aluminate were analyzed by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The addition of zinc hydroxide retarded hardening at more than 0.3 mass%, as previously reported, and zinc produced calcium zincate hydrates (qatranaite) and inhibited the hydration of tricalcium silicate (C<sub>3</sub>S), the main component of hydration of OPC. After the zinc had been fully consumed in qatranaite formation, C<sub>3</sub>S started normal hydration. The addition of sodium aluminate caused earlier re-hydration of C<sub>3</sub>S, which was inhibited by hydration, as the hydrates produced appeared to consume zincate anions. The rapid setting effect of sodium aluminate addition was also delayed by zinc hydroxide, but it was estimated that the addition of the same amount of zinc would ensure initial strength through early formation of hydrocalumite. In the longer term, strength was considered to be more enhanced by the onset of C<sub>3</sub>S hydration.</p></div>\",\"PeriodicalId\":643,\"journal\":{\"name\":\"Journal of Material Cycles and Waste Management\",\"volume\":\"26 6\",\"pages\":\"3596 - 3608\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10163-024-02059-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Cycles and Waste Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10163-024-02059-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-024-02059-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
通过 X 射线衍射和扫描电子显微镜/能量色散 X 射线光谱分析了锌的硬化抑制作用和铝酸钠增强硬化的机理。与之前的报道一样,氢氧化锌的添加量超过 0.3 质量%时,会延缓硬化,锌会产生锌酸钙水合物(qatranaite),并抑制 OPC 水化的主要成分硅酸三钙(C3S)的水化。当锌在qatranaite形成过程中消耗殆尽后,C3S开始正常水合。铝酸钠的加入会使 C3S 提前重新水化,而水化会抑制 C3S 的重新水化,因为产生的水合物似乎会消耗锌酸阴离子。氢氧化锌也延迟了铝酸钠的快速凝固效果,但据估计,添加相同数量的锌可通过早期形成氢铝酸盐确保初始强度。从长远来看,C3S 水化的开始更能增强强度。
Study on the mechanisms of retardation of cement hydration by zinc and acceleration of hardening by sodium aluminate from crystallographic phase analysis
Zinc was focused on as an element causing hardening retardation due to delayed hydration of Ordinary Portland Cement (OPC), and its hardening inhibitory effect and the mechanism of hardening enhancement by sodium aluminate were analyzed by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The addition of zinc hydroxide retarded hardening at more than 0.3 mass%, as previously reported, and zinc produced calcium zincate hydrates (qatranaite) and inhibited the hydration of tricalcium silicate (C3S), the main component of hydration of OPC. After the zinc had been fully consumed in qatranaite formation, C3S started normal hydration. The addition of sodium aluminate caused earlier re-hydration of C3S, which was inhibited by hydration, as the hydrates produced appeared to consume zincate anions. The rapid setting effect of sodium aluminate addition was also delayed by zinc hydroxide, but it was estimated that the addition of the same amount of zinc would ensure initial strength through early formation of hydrocalumite. In the longer term, strength was considered to be more enhanced by the onset of C3S hydration.
期刊介绍:
The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles.
The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management.
The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).