稀疏正则化线性回归的几何学和良好假设性

Jasper Marijn Everink, Yiqiu Dong, Martin Skovgaard Andersen
{"title":"稀疏正则化线性回归的几何学和良好假设性","authors":"Jasper Marijn Everink, Yiqiu Dong, Martin Skovgaard Andersen","doi":"arxiv-2409.03461","DOIUrl":null,"url":null,"abstract":"In this work, we study the well-posedness of certain sparse regularized\nlinear regression problems, i.e., the existence, uniqueness and continuity of\nthe solution map with respect to the data. We focus on regularization functions\nthat are convex piecewise linear, i.e., whose epigraph is polyhedral. This\nincludes total variation on graphs and polyhedral constraints. We provide a\ngeometric framework for these functions based on their connection to polyhedral\nsets and apply this to the study of the well-posedness of the corresponding\nsparse regularized linear regression problem. Particularly, we provide\ngeometric conditions for well-posedness of the regression problem, compare\nthese conditions to those for smooth regularization, and show the computational\ndifficulty of verifying these conditions.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Geometry and Well-Posedness of Sparse Regularized Linear Regression\",\"authors\":\"Jasper Marijn Everink, Yiqiu Dong, Martin Skovgaard Andersen\",\"doi\":\"arxiv-2409.03461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the well-posedness of certain sparse regularized\\nlinear regression problems, i.e., the existence, uniqueness and continuity of\\nthe solution map with respect to the data. We focus on regularization functions\\nthat are convex piecewise linear, i.e., whose epigraph is polyhedral. This\\nincludes total variation on graphs and polyhedral constraints. We provide a\\ngeometric framework for these functions based on their connection to polyhedral\\nsets and apply this to the study of the well-posedness of the corresponding\\nsparse regularized linear regression problem. Particularly, we provide\\ngeometric conditions for well-posedness of the regression problem, compare\\nthese conditions to those for smooth regularization, and show the computational\\ndifficulty of verifying these conditions.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了某些稀疏正则化线性回归问题的良好提出性,即相对于数据的解图的存在性、唯一性和连续性。我们重点研究凸片面线性的正则化函数,即其外延为多面体的正则化函数。这包括图形上的总变化和多面体约束。我们根据这些函数与多面体集的联系,为它们提供了计量学框架,并将其应用于相应的解析正则化线性回归问题的好拟性研究。特别是,我们为回归问题的良好拟合提供了几何条件,将这些条件与平滑正则化的条件进行了比较,并展示了验证这些条件的计算难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Geometry and Well-Posedness of Sparse Regularized Linear Regression
In this work, we study the well-posedness of certain sparse regularized linear regression problems, i.e., the existence, uniqueness and continuity of the solution map with respect to the data. We focus on regularization functions that are convex piecewise linear, i.e., whose epigraph is polyhedral. This includes total variation on graphs and polyhedral constraints. We provide a geometric framework for these functions based on their connection to polyhedral sets and apply this to the study of the well-posedness of the corresponding sparse regularized linear regression problem. Particularly, we provide geometric conditions for well-posedness of the regression problem, compare these conditions to those for smooth regularization, and show the computational difficulty of verifying these conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信