平方格拉斯曼的似然几何

Hannah Friedman
{"title":"平方格拉斯曼的似然几何","authors":"Hannah Friedman","doi":"arxiv-2409.03730","DOIUrl":null,"url":null,"abstract":"We study projection determinantal point processes and their connection to the\nsquared Grassmannian. We prove that the log-likelihood function of this\nstatistical model has $(n - 1)!/2$ critical points, all of which are real and\npositive, thereby settling a conjecture of Devriendt, Friedman, Reinke, and\nSturmfels.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Likelihood Geometry of the Squared Grassmannian\",\"authors\":\"Hannah Friedman\",\"doi\":\"arxiv-2409.03730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study projection determinantal point processes and their connection to the\\nsquared Grassmannian. We prove that the log-likelihood function of this\\nstatistical model has $(n - 1)!/2$ critical points, all of which are real and\\npositive, thereby settling a conjecture of Devriendt, Friedman, Reinke, and\\nSturmfels.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了投影行列式点过程及其与平方格拉斯曼的联系。我们证明了这一统计模型的对数似然函数有 $(n - 1)!/2$ 个临界点,所有临界点都是实数和正数,从而解决了 Devriendt、Friedman、Reinke 和 Sturmfels 的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Likelihood Geometry of the Squared Grassmannian
We study projection determinantal point processes and their connection to the squared Grassmannian. We prove that the log-likelihood function of this statistical model has $(n - 1)!/2$ critical points, all of which are real and positive, thereby settling a conjecture of Devriendt, Friedman, Reinke, and Sturmfels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信