通过定量回归建立生成模型

Johannes Schmidt-Hieber, Petr Zamolodtchikov
{"title":"通过定量回归建立生成模型","authors":"Johannes Schmidt-Hieber, Petr Zamolodtchikov","doi":"arxiv-2409.04231","DOIUrl":null,"url":null,"abstract":"We link conditional generative modelling to quantile regression. We propose a\nsuitable loss function and derive minimax convergence rates for the associated\nrisk under smoothness assumptions imposed on the conditional distribution. To\nestablish the lower bound, we show that nonparametric regression can be seen as\na sub-problem of the considered generative modelling framework. Finally, we\ndiscuss extensions of our work to generate data from multivariate\ndistributions.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Modelling via Quantile Regression\",\"authors\":\"Johannes Schmidt-Hieber, Petr Zamolodtchikov\",\"doi\":\"arxiv-2409.04231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We link conditional generative modelling to quantile regression. We propose a\\nsuitable loss function and derive minimax convergence rates for the associated\\nrisk under smoothness assumptions imposed on the conditional distribution. To\\nestablish the lower bound, we show that nonparametric regression can be seen as\\na sub-problem of the considered generative modelling framework. Finally, we\\ndiscuss extensions of our work to generate data from multivariate\\ndistributions.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将条件生成模型与量子回归联系起来。我们提出了合适的损失函数,并推导出在条件分布的平滑性假设下相关风险的最小收敛率。为了确定下限,我们证明非参数回归可以看作是所考虑的生成建模框架的一个子问题。最后,我们讨论了从多元分布生成数据的工作扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Modelling via Quantile Regression
We link conditional generative modelling to quantile regression. We propose a suitable loss function and derive minimax convergence rates for the associated risk under smoothness assumptions imposed on the conditional distribution. To establish the lower bound, we show that nonparametric regression can be seen as a sub-problem of the considered generative modelling framework. Finally, we discuss extensions of our work to generate data from multivariate distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信