分数随机热方程的参数估计 :CLT中的贝里-埃森边界

Soukaina Douissi, Fatimah Alshahrani
{"title":"分数随机热方程的参数估计 :CLT中的贝里-埃森边界","authors":"Soukaina Douissi, Fatimah Alshahrani","doi":"arxiv-2409.05416","DOIUrl":null,"url":null,"abstract":"The aim of this work is to estimate the drift coefficient of a fractional\nheat equation driven by an additive space-time noise using the Maximum\nlikelihood estimator (MLE). In the first part of the paper, the first $N$\nFourier modes of the solution are observed continuously over a finite time\ninterval $[0, T ]$. The explicit upper bounds for the Wasserstein distance for\nthe central limit theorem of the MLE is provided when $N \\rightarrow \\infty$\nand/or $T \\rightarrow \\infty$. While in the second part of the paper, the $N$\nFourier modes are observed at uniform time grid : $t_i = i \\frac{T}{M}$,\n$i=0,..,M,$ where $M$ is the number of time grid points. The consistency and\nasymptotic normality are studied when $T,M,N \\rightarrow + \\infty$ in addition\nto the rate of convergence in law in the CLT.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation for fractional stochastic heat equations : Berry-Esséen bounds in CLTs\",\"authors\":\"Soukaina Douissi, Fatimah Alshahrani\",\"doi\":\"arxiv-2409.05416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to estimate the drift coefficient of a fractional\\nheat equation driven by an additive space-time noise using the Maximum\\nlikelihood estimator (MLE). In the first part of the paper, the first $N$\\nFourier modes of the solution are observed continuously over a finite time\\ninterval $[0, T ]$. The explicit upper bounds for the Wasserstein distance for\\nthe central limit theorem of the MLE is provided when $N \\\\rightarrow \\\\infty$\\nand/or $T \\\\rightarrow \\\\infty$. While in the second part of the paper, the $N$\\nFourier modes are observed at uniform time grid : $t_i = i \\\\frac{T}{M}$,\\n$i=0,..,M,$ where $M$ is the number of time grid points. The consistency and\\nasymptotic normality are studied when $T,M,N \\\\rightarrow + \\\\infty$ in addition\\nto the rate of convergence in law in the CLT.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是利用最大似然估计法(MLE)估计由时空噪声加法驱动的分式热方程的漂移系数。在论文的第一部分,在有限的时间区间 $[0, T ]$ 内连续观测解的前 $N$Fourier 模式。当 $N \rightarrow \infty$ 和/或 $T \rightarrow \infty$ 时,为 MLE 的中心极限定理提供了明确的 Wasserstein 距离上限。而在本文的第二部分,$N$傅立叶模式是在统一时间网格下观察到的:$t_i = i \frac{T}{M}$,$i=0,...,M,$ 其中$M$是时间网格点的数量。研究了当 $T,M,N \rightarrow + \infty$ 时的一致性和渐近正态性,以及 CLT 中的收敛速率规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation for fractional stochastic heat equations : Berry-Esséen bounds in CLTs
The aim of this work is to estimate the drift coefficient of a fractional heat equation driven by an additive space-time noise using the Maximum likelihood estimator (MLE). In the first part of the paper, the first $N$ Fourier modes of the solution are observed continuously over a finite time interval $[0, T ]$. The explicit upper bounds for the Wasserstein distance for the central limit theorem of the MLE is provided when $N \rightarrow \infty$ and/or $T \rightarrow \infty$. While in the second part of the paper, the $N$ Fourier modes are observed at uniform time grid : $t_i = i \frac{T}{M}$, $i=0,..,M,$ where $M$ is the number of time grid points. The consistency and asymptotic normality are studied when $T,M,N \rightarrow + \infty$ in addition to the rate of convergence in law in the CLT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信