用双倍稳健估计器估计生存数据的异质性治疗效果

Guanghui Pan
{"title":"用双倍稳健估计器估计生存数据的异质性治疗效果","authors":"Guanghui Pan","doi":"arxiv-2409.01412","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a doubly doubly robust estimator for the average\nand heterogeneous treatment effect for left-truncated-right-censored (LTRC)\nsurvival data. In causal inference for survival functions in LTRC survival\ndata, two missing data issues are noteworthy: one is the missing data of\ncounterfactuals for causal inference, and the other is the missing data due to\ntruncation and censoring. Based on previous research on non-parametric deep\nlearning estimation in survival analysis, this paper proposes an algorithm to\nobtain an efficient estimate of the average and heterogeneous causal effect. We\nsimulate the data and compare our methods with the marginal hazard ratio\nestimation, the naive plug-in estimation, and the doubly robust causal with Cox\nProportional Hazard estimation and illustrate the advantages and disadvantages\nof the model application.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Heterogenous Treatment Effects for Survival Data with Doubly Doubly Robust Estimator\",\"authors\":\"Guanghui Pan\",\"doi\":\"arxiv-2409.01412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a doubly doubly robust estimator for the average\\nand heterogeneous treatment effect for left-truncated-right-censored (LTRC)\\nsurvival data. In causal inference for survival functions in LTRC survival\\ndata, two missing data issues are noteworthy: one is the missing data of\\ncounterfactuals for causal inference, and the other is the missing data due to\\ntruncation and censoring. Based on previous research on non-parametric deep\\nlearning estimation in survival analysis, this paper proposes an algorithm to\\nobtain an efficient estimate of the average and heterogeneous causal effect. We\\nsimulate the data and compare our methods with the marginal hazard ratio\\nestimation, the naive plug-in estimation, and the doubly robust causal with Cox\\nProportional Hazard estimation and illustrate the advantages and disadvantages\\nof the model application.\",\"PeriodicalId\":501273,\"journal\":{\"name\":\"arXiv - ECON - General Economics\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - General Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了左截断右删失(LTRC)生存数据的平均和异质性治疗效果的双倍稳健估计器。在对 LTRC 生存数据中的生存函数进行因果推断时,有两个数据缺失问题值得注意:一个是用于因果推断的反事实数据缺失,另一个是由于截断和删减导致的数据缺失。本文在前人对生存分析中的非参数深度学习估计研究的基础上,提出了一种算法来获得平均和异质性因果效应的有效估计。我们对数据进行了模拟,并将我们的方法与边际危险比估计法、天真插件估计法、双稳健因果关系与 CoxProportional Hazard 估计法进行了比较,并说明了模型应用的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Heterogenous Treatment Effects for Survival Data with Doubly Doubly Robust Estimator
In this paper, we introduce a doubly doubly robust estimator for the average and heterogeneous treatment effect for left-truncated-right-censored (LTRC) survival data. In causal inference for survival functions in LTRC survival data, two missing data issues are noteworthy: one is the missing data of counterfactuals for causal inference, and the other is the missing data due to truncation and censoring. Based on previous research on non-parametric deep learning estimation in survival analysis, this paper proposes an algorithm to obtain an efficient estimate of the average and heterogeneous causal effect. We simulate the data and compare our methods with the marginal hazard ratio estimation, the naive plug-in estimation, and the doubly robust causal with Cox Proportional Hazard estimation and illustrate the advantages and disadvantages of the model application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信