用于多国 GDP 预测的深度学习:模型性能和数据影响研究

Huaqing Xie, Xingcheng Xu, Fangjia Yan, Xun Qian, Yanqing Yang
{"title":"用于多国 GDP 预测的深度学习:模型性能和数据影响研究","authors":"Huaqing Xie, Xingcheng Xu, Fangjia Yan, Xun Qian, Yanqing Yang","doi":"arxiv-2409.02551","DOIUrl":null,"url":null,"abstract":"GDP is a vital measure of a country's economic health, reflecting the total\nvalue of goods and services produced. Forecasting GDP growth is essential for\neconomic planning, as it helps governments, businesses, and investors\nanticipate trends, make informed decisions, and promote stability and growth.\nWhile most previous works focus on the prediction of the GDP growth rate for a\nsingle country or by machine learning methods, in this paper we give a\ncomprehensive study on the GDP growth forecasting in the multi-country scenario\nby deep learning algorithms. For the prediction of the GDP growth where only\nGDP growth values are used, linear regression is generally better than deep\nlearning algorithms. However, for the regression and the prediction of the GDP\ngrowth with selected economic indicators, deep learning algorithms could be\nsuperior to linear regression. We also investigate the influence of the novel\ndata -- the light intensity data on the prediction of the GDP growth, and\nnumerical experiments indicate that they do not necessarily improve the\nprediction performance. Code is provided at\nhttps://github.com/Sariel2018/Multi-Country-GDP-Prediction.git.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact\",\"authors\":\"Huaqing Xie, Xingcheng Xu, Fangjia Yan, Xun Qian, Yanqing Yang\",\"doi\":\"arxiv-2409.02551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GDP is a vital measure of a country's economic health, reflecting the total\\nvalue of goods and services produced. Forecasting GDP growth is essential for\\neconomic planning, as it helps governments, businesses, and investors\\nanticipate trends, make informed decisions, and promote stability and growth.\\nWhile most previous works focus on the prediction of the GDP growth rate for a\\nsingle country or by machine learning methods, in this paper we give a\\ncomprehensive study on the GDP growth forecasting in the multi-country scenario\\nby deep learning algorithms. For the prediction of the GDP growth where only\\nGDP growth values are used, linear regression is generally better than deep\\nlearning algorithms. However, for the regression and the prediction of the GDP\\ngrowth with selected economic indicators, deep learning algorithms could be\\nsuperior to linear regression. We also investigate the influence of the novel\\ndata -- the light intensity data on the prediction of the GDP growth, and\\nnumerical experiments indicate that they do not necessarily improve the\\nprediction performance. Code is provided at\\nhttps://github.com/Sariel2018/Multi-Country-GDP-Prediction.git.\",\"PeriodicalId\":501273,\"journal\":{\"name\":\"arXiv - ECON - General Economics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - General Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国内生产总值是衡量一个国家经济健康状况的重要指标,反映了商品和服务生产的总价值。预测 GDP 增长对经济规划至关重要,因为它有助于政府、企业和投资者预测趋势,做出明智决策,并促进稳定和增长。虽然之前的大多数工作都集中在预测单个国家的 GDP 增长率或使用机器学习方法,但在本文中,我们对使用深度学习算法预测多国情况下的 GDP 增长进行了全面研究。对于只使用 GDP 增长值的 GDP 增长预测,线性回归通常优于深度学习算法。但是,对于带有选定经济指标的 GDP 增长的回归和预测,深度学习算法可能优于线性回归。我们还研究了新数据--光照强度数据对 GDP 增长预测的影响,数值实验表明它们并不一定能提高预测性能。代码见https://github.com/Sariel2018/Multi-Country-GDP-Prediction.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact
GDP is a vital measure of a country's economic health, reflecting the total value of goods and services produced. Forecasting GDP growth is essential for economic planning, as it helps governments, businesses, and investors anticipate trends, make informed decisions, and promote stability and growth. While most previous works focus on the prediction of the GDP growth rate for a single country or by machine learning methods, in this paper we give a comprehensive study on the GDP growth forecasting in the multi-country scenario by deep learning algorithms. For the prediction of the GDP growth where only GDP growth values are used, linear regression is generally better than deep learning algorithms. However, for the regression and the prediction of the GDP growth with selected economic indicators, deep learning algorithms could be superior to linear regression. We also investigate the influence of the novel data -- the light intensity data on the prediction of the GDP growth, and numerical experiments indicate that they do not necessarily improve the prediction performance. Code is provided at https://github.com/Sariel2018/Multi-Country-GDP-Prediction.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信