Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota
{"title":"基于递归沃尔弗顿-瓦格纳估计的统一规范中多维密度的置信区域","authors":"Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota","doi":"arxiv-2409.01451","DOIUrl":null,"url":null,"abstract":"We construct an optimal exponential tail decreasing confidence region for an\nunknown density of distribution in the Lebesgue-Riesz as well as in the\nuniform} norm, built on the sample of the random vectors based of the famous\nrecursive Wolverton-Wagner density estimation.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidence regions for the multidimensional density in the uniform norm based on the recursive Wolverton-Wagner estimation\",\"authors\":\"Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota\",\"doi\":\"arxiv-2409.01451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an optimal exponential tail decreasing confidence region for an\\nunknown density of distribution in the Lebesgue-Riesz as well as in the\\nuniform} norm, built on the sample of the random vectors based of the famous\\nrecursive Wolverton-Wagner density estimation.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Confidence regions for the multidimensional density in the uniform norm based on the recursive Wolverton-Wagner estimation
We construct an optimal exponential tail decreasing confidence region for an
unknown density of distribution in the Lebesgue-Riesz as well as in the
uniform} norm, built on the sample of the random vectors based of the famous
recursive Wolverton-Wagner density estimation.