基于递归沃尔弗顿-瓦格纳估计的统一规范中多维密度的置信区域

Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota
{"title":"基于递归沃尔弗顿-瓦格纳估计的统一规范中多维密度的置信区域","authors":"Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota","doi":"arxiv-2409.01451","DOIUrl":null,"url":null,"abstract":"We construct an optimal exponential tail decreasing confidence region for an\nunknown density of distribution in the Lebesgue-Riesz as well as in the\nuniform} norm, built on the sample of the random vectors based of the famous\nrecursive Wolverton-Wagner density estimation.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidence regions for the multidimensional density in the uniform norm based on the recursive Wolverton-Wagner estimation\",\"authors\":\"Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota\",\"doi\":\"arxiv-2409.01451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an optimal exponential tail decreasing confidence region for an\\nunknown density of distribution in the Lebesgue-Riesz as well as in the\\nuniform} norm, built on the sample of the random vectors based of the famous\\nrecursive Wolverton-Wagner density estimation.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们根据著名的递归沃尔弗顿-瓦格纳密度估计,在随机向量样本的基础上,为未知的 Lebesgue-Riesz 和 Uniform} 规范分布密度构建了一个最优指数尾部递减置信区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence regions for the multidimensional density in the uniform norm based on the recursive Wolverton-Wagner estimation
We construct an optimal exponential tail decreasing confidence region for an unknown density of distribution in the Lebesgue-Riesz as well as in the uniform} norm, built on the sample of the random vectors based of the famous recursive Wolverton-Wagner density estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信