具有随机设计的 PDE 回归模型中最大后验估计器的收敛率

Maximilian Siebel
{"title":"具有随机设计的 PDE 回归模型中最大后验估计器的收敛率","authors":"Maximilian Siebel","doi":"arxiv-2409.03417","DOIUrl":null,"url":null,"abstract":"We consider the statistical inverse problem of recovering a parameter\n$\\theta\\in H^\\alpha$ from data arising from the Gaussian regression problem\n\\begin{equation*} Y = \\mathscr{G}(\\theta)(Z)+\\varepsilon \\end{equation*} with nonlinear forward\nmap $\\mathscr{G}:\\mathbb{L}^2\\to\\mathbb{L}^2$, random design points $Z$ and\nGaussian noise $\\varepsilon$. The estimation strategy is based on a least\nsquares approach under $\\Vert\\cdot\\Vert_{H^\\alpha}$-constraints. We establish\nthe existence of a least squares estimator $\\hat{\\theta}$ as a maximizer for a\ngiven functional under Lipschitz-type assumptions on the forward map\n$\\mathscr{G}$. A general concentration result is shown, which is used to prove\nconsistency and upper bounds for the prediction error. The corresponding rates\nof convergence reflect not only the smoothness of the parameter of interest but\nalso the ill-posedness of the underlying inverse problem. We apply the general\nmodel to the Darcy problem, where the recovery of an unknown coefficient\nfunction $f$ of a PDE is of interest. For this example, we also provide\ncorresponding rates of convergence for the prediction and estimation errors.\nAdditionally, we briefly discuss the applicability of the general model to\nother problems.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Rates for the Maximum A Posteriori Estimator in PDE-Regression Models with Random Design\",\"authors\":\"Maximilian Siebel\",\"doi\":\"arxiv-2409.03417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the statistical inverse problem of recovering a parameter\\n$\\\\theta\\\\in H^\\\\alpha$ from data arising from the Gaussian regression problem\\n\\\\begin{equation*} Y = \\\\mathscr{G}(\\\\theta)(Z)+\\\\varepsilon \\\\end{equation*} with nonlinear forward\\nmap $\\\\mathscr{G}:\\\\mathbb{L}^2\\\\to\\\\mathbb{L}^2$, random design points $Z$ and\\nGaussian noise $\\\\varepsilon$. The estimation strategy is based on a least\\nsquares approach under $\\\\Vert\\\\cdot\\\\Vert_{H^\\\\alpha}$-constraints. We establish\\nthe existence of a least squares estimator $\\\\hat{\\\\theta}$ as a maximizer for a\\ngiven functional under Lipschitz-type assumptions on the forward map\\n$\\\\mathscr{G}$. A general concentration result is shown, which is used to prove\\nconsistency and upper bounds for the prediction error. The corresponding rates\\nof convergence reflect not only the smoothness of the parameter of interest but\\nalso the ill-posedness of the underlying inverse problem. We apply the general\\nmodel to the Darcy problem, where the recovery of an unknown coefficient\\nfunction $f$ of a PDE is of interest. For this example, we also provide\\ncorresponding rates of convergence for the prediction and estimation errors.\\nAdditionally, we briefly discuss the applicability of the general model to\\nother problems.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑从高斯回归问题产生的数据中恢复 H^alpha 中的参数的统计逆问题。Y = \mathscr{G}(\theta)(Z)+\varepsilon \end{equation*} 具有非线性前向映射 $\mathscr{G}:\mathbb{L}^2\to\mathbb{L}^2$, 随机设计点 $Z$ 和高斯噪声 $\varepsilon$.估计策略基于 $\Vert\cdot\Vert_{H^\alpha}$ 约束下的最小二乘法。我们建立了最小二乘估计器 $\hat{\theta}$ 的存在性,它是前向映射 $\mathscr{G}$ 的 Lipschitz 型假设下给定函数的最大化。显示了一个一般的集中结果,它被用来证明预测误差的一致性和上限。相应的收敛率不仅反映了相关参数的平滑性,也反映了基本逆问题的拟合不良性。我们将一般模型应用于达西问题,在达西问题中,我们关注的是恢复一个 PDE 的未知系数函数 $f$。此外,我们还简要讨论了一般模型对其他问题的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Rates for the Maximum A Posteriori Estimator in PDE-Regression Models with Random Design
We consider the statistical inverse problem of recovering a parameter $\theta\in H^\alpha$ from data arising from the Gaussian regression problem \begin{equation*} Y = \mathscr{G}(\theta)(Z)+\varepsilon \end{equation*} with nonlinear forward map $\mathscr{G}:\mathbb{L}^2\to\mathbb{L}^2$, random design points $Z$ and Gaussian noise $\varepsilon$. The estimation strategy is based on a least squares approach under $\Vert\cdot\Vert_{H^\alpha}$-constraints. We establish the existence of a least squares estimator $\hat{\theta}$ as a maximizer for a given functional under Lipschitz-type assumptions on the forward map $\mathscr{G}$. A general concentration result is shown, which is used to prove consistency and upper bounds for the prediction error. The corresponding rates of convergence reflect not only the smoothness of the parameter of interest but also the ill-posedness of the underlying inverse problem. We apply the general model to the Darcy problem, where the recovery of an unknown coefficient function $f$ of a PDE is of interest. For this example, we also provide corresponding rates of convergence for the prediction and estimation errors. Additionally, we briefly discuss the applicability of the general model to other problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信