基于正则化的序量化方法

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, Martin Senz
{"title":"基于正则化的序量化方法","authors":"Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, Martin Senz","doi":"10.1007/s10618-024-01067-2","DOIUrl":null,"url":null,"abstract":"<p>Quantification, i.e., the task of predicting the class prevalence values in bags of unlabeled data items, has received increased attention in recent years. However, most quantification research has concentrated on developing algorithms for binary and multi-class problems in which the classes are not ordered. Here, we study the ordinal case, i.e., the case in which a total order is defined on the set of <span>\\(n&gt;2\\)</span> classes. We give three main contributions to this field. First, we create and make available two datasets for ordinal quantification (OQ) research that overcome the inadequacies of the previously available ones. Second, we experimentally compare the most important OQ algorithms proposed in the literature so far. To this end, we bring together algorithms proposed by authors from very different research fields, such as data mining and astrophysics, who were unaware of each others’ developments. Third, we propose a novel class of regularized OQ algorithms, which outperforms existing algorithms in our experiments. The key to this gain in performance is that our regularization prevents ordinally implausible estimates, assuming that ordinal distributions tend to be smooth in practice. We informally verify this assumption for several real-world applications.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization-based methods for ordinal quantification\",\"authors\":\"Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, Martin Senz\",\"doi\":\"10.1007/s10618-024-01067-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantification, i.e., the task of predicting the class prevalence values in bags of unlabeled data items, has received increased attention in recent years. However, most quantification research has concentrated on developing algorithms for binary and multi-class problems in which the classes are not ordered. Here, we study the ordinal case, i.e., the case in which a total order is defined on the set of <span>\\\\(n&gt;2\\\\)</span> classes. We give three main contributions to this field. First, we create and make available two datasets for ordinal quantification (OQ) research that overcome the inadequacies of the previously available ones. Second, we experimentally compare the most important OQ algorithms proposed in the literature so far. To this end, we bring together algorithms proposed by authors from very different research fields, such as data mining and astrophysics, who were unaware of each others’ developments. Third, we propose a novel class of regularized OQ algorithms, which outperforms existing algorithms in our experiments. The key to this gain in performance is that our regularization prevents ordinally implausible estimates, assuming that ordinal distributions tend to be smooth in practice. We informally verify this assumption for several real-world applications.</p>\",\"PeriodicalId\":55183,\"journal\":{\"name\":\"Data Mining and Knowledge Discovery\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10618-024-01067-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01067-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

量化,即预测未标记数据项袋中类别流行值的任务,近年来受到越来越多的关注。然而,大多数量化研究都集中在开发二元和多类问题的算法上,在这些问题中,类是没有排序的。在这里,我们研究的是序数情况,即在类(n>2\)集合上定义了总序的情况。我们对这一领域有三个主要贡献。首先,我们创建并提供了两个用于序量化(OQ)研究的数据集,克服了之前可用数据集的不足。其次,我们通过实验比较了迄今为止文献中提出的最重要的 OQ 算法。为此,我们汇集了来自数据挖掘和天体物理学等不同研究领域的作者提出的算法,这些作者并不了解彼此的发展情况。第三,我们提出了一类新型正则化 OQ 算法,在实验中表现优于现有算法。性能提升的关键在于,我们的正则化可以防止顺序上难以置信的估计,假设顺序分布在实践中趋于平稳。我们在几个实际应用中非正式地验证了这一假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regularization-based methods for ordinal quantification

Regularization-based methods for ordinal quantification

Quantification, i.e., the task of predicting the class prevalence values in bags of unlabeled data items, has received increased attention in recent years. However, most quantification research has concentrated on developing algorithms for binary and multi-class problems in which the classes are not ordered. Here, we study the ordinal case, i.e., the case in which a total order is defined on the set of \(n>2\) classes. We give three main contributions to this field. First, we create and make available two datasets for ordinal quantification (OQ) research that overcome the inadequacies of the previously available ones. Second, we experimentally compare the most important OQ algorithms proposed in the literature so far. To this end, we bring together algorithms proposed by authors from very different research fields, such as data mining and astrophysics, who were unaware of each others’ developments. Third, we propose a novel class of regularized OQ algorithms, which outperforms existing algorithms in our experiments. The key to this gain in performance is that our regularization prevents ordinally implausible estimates, assuming that ordinal distributions tend to be smooth in practice. We informally verify this assumption for several real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信