{"title":"包含高阶互动的社交网络中的舆论动态","authors":"Zuobai Zhang, Wanyue Xu, Zhongzhi Zhang, Guanrong Chen","doi":"10.1007/s10618-024-01064-5","DOIUrl":null,"url":null,"abstract":"<p>The issue of opinion sharing and formation has received considerable attention in the academic literature, and a few models have been proposed to study this problem. However, existing models are limited to the interactions among nearest neighbors, with those second, third, and higher-order neighbors only considered indirectly, despite the fact that higher-order interactions occur frequently in real social networks. In this paper, we develop a new model for opinion dynamics by incorporating long-range interactions based on higher-order random walks that can explicitly tune the degree of influence of higher-order neighbor interactions. We prove that the model converges to a fixed opinion vector, which may differ greatly from those models without higher-order interactions. Since direct computation of the equilibrium opinion is computationally expensive, which involves the operations of huge-scale matrix multiplication and inversion, we design a theoretically convergence-guaranteed estimation algorithm that approximates the equilibrium opinion vector nearly linearly in both space and time with respect to the number of edges in the graph. We conduct extensive experiments on various social networks, demonstrating that the new algorithm is both highly efficient and effective.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"138 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opinion dynamics in social networks incorporating higher-order interactions\",\"authors\":\"Zuobai Zhang, Wanyue Xu, Zhongzhi Zhang, Guanrong Chen\",\"doi\":\"10.1007/s10618-024-01064-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The issue of opinion sharing and formation has received considerable attention in the academic literature, and a few models have been proposed to study this problem. However, existing models are limited to the interactions among nearest neighbors, with those second, third, and higher-order neighbors only considered indirectly, despite the fact that higher-order interactions occur frequently in real social networks. In this paper, we develop a new model for opinion dynamics by incorporating long-range interactions based on higher-order random walks that can explicitly tune the degree of influence of higher-order neighbor interactions. We prove that the model converges to a fixed opinion vector, which may differ greatly from those models without higher-order interactions. Since direct computation of the equilibrium opinion is computationally expensive, which involves the operations of huge-scale matrix multiplication and inversion, we design a theoretically convergence-guaranteed estimation algorithm that approximates the equilibrium opinion vector nearly linearly in both space and time with respect to the number of edges in the graph. We conduct extensive experiments on various social networks, demonstrating that the new algorithm is both highly efficient and effective.</p>\",\"PeriodicalId\":55183,\"journal\":{\"name\":\"Data Mining and Knowledge Discovery\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10618-024-01064-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01064-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Opinion dynamics in social networks incorporating higher-order interactions
The issue of opinion sharing and formation has received considerable attention in the academic literature, and a few models have been proposed to study this problem. However, existing models are limited to the interactions among nearest neighbors, with those second, third, and higher-order neighbors only considered indirectly, despite the fact that higher-order interactions occur frequently in real social networks. In this paper, we develop a new model for opinion dynamics by incorporating long-range interactions based on higher-order random walks that can explicitly tune the degree of influence of higher-order neighbor interactions. We prove that the model converges to a fixed opinion vector, which may differ greatly from those models without higher-order interactions. Since direct computation of the equilibrium opinion is computationally expensive, which involves the operations of huge-scale matrix multiplication and inversion, we design a theoretically convergence-guaranteed estimation algorithm that approximates the equilibrium opinion vector nearly linearly in both space and time with respect to the number of edges in the graph. We conduct extensive experiments on various social networks, demonstrating that the new algorithm is both highly efficient and effective.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.