通过子采样对网络矩进行多元推断

Mingyu Qi, Tianxi Li, Wen Zhou
{"title":"通过子采样对网络矩进行多元推断","authors":"Mingyu Qi, Tianxi Li, Wen Zhou","doi":"arxiv-2409.01599","DOIUrl":null,"url":null,"abstract":"In this paper, we study the characterization of a network population by\nanalyzing a single observed network, focusing on the counts of multiple network\nmotifs or their corresponding multivariate network moments. We introduce an\nalgorithm based on node subsampling to approximate the nontrivial joint\ndistribution of the network moments, and prove its asymptotic accuracy. By\nexamining the joint distribution of these moments, our approach captures\ncomplex dependencies among network motifs, making a significant advancement\nover earlier methods that rely on individual motifs marginally. This enables\nmore accurate and robust network inference. Through real-world applications,\nsuch as comparing coexpression networks of distinct gene sets and analyzing\ncollaboration patterns within the statistical community, we demonstrate that\nthe multivariate inference of network moments provides deeper insights than\nmarginal approaches, thereby enhancing our understanding of network mechanisms.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Inference of Network Moments by Subsampling\",\"authors\":\"Mingyu Qi, Tianxi Li, Wen Zhou\",\"doi\":\"arxiv-2409.01599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the characterization of a network population by\\nanalyzing a single observed network, focusing on the counts of multiple network\\nmotifs or their corresponding multivariate network moments. We introduce an\\nalgorithm based on node subsampling to approximate the nontrivial joint\\ndistribution of the network moments, and prove its asymptotic accuracy. By\\nexamining the joint distribution of these moments, our approach captures\\ncomplex dependencies among network motifs, making a significant advancement\\nover earlier methods that rely on individual motifs marginally. This enables\\nmore accurate and robust network inference. Through real-world applications,\\nsuch as comparing coexpression networks of distinct gene sets and analyzing\\ncollaboration patterns within the statistical community, we demonstrate that\\nthe multivariate inference of network moments provides deeper insights than\\nmarginal approaches, thereby enhancing our understanding of network mechanisms.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过分析单个观测网络来研究网络群体的特征,重点是多个网络特征的计数或其相应的多变量网络矩。我们引入了基于节点子采样的分析方法来逼近网络矩的非三角联合分布,并证明了其渐近精度。通过研究这些矩的联合分布,我们的方法捕捉到了网络主题之间复杂的依赖关系,比早期仅依赖单个主题的方法有了显著进步。这使得网络推断更加准确和稳健。通过比较不同基因组的共表达网络和分析统计界的合作模式等实际应用,我们证明了网络矩的多元推断比边际方法提供了更深刻的见解,从而增强了我们对网络机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Inference of Network Moments by Subsampling
In this paper, we study the characterization of a network population by analyzing a single observed network, focusing on the counts of multiple network motifs or their corresponding multivariate network moments. We introduce an algorithm based on node subsampling to approximate the nontrivial joint distribution of the network moments, and prove its asymptotic accuracy. By examining the joint distribution of these moments, our approach captures complex dependencies among network motifs, making a significant advancement over earlier methods that rely on individual motifs marginally. This enables more accurate and robust network inference. Through real-world applications, such as comparing coexpression networks of distinct gene sets and analyzing collaboration patterns within the statistical community, we demonstrate that the multivariate inference of network moments provides deeper insights than marginal approaches, thereby enhancing our understanding of network mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信