论大维度内积核回归的平斯克边界

Weihao Lu, Jialin Ding, Haobo Zhang, Qian Lin
{"title":"论大维度内积核回归的平斯克边界","authors":"Weihao Lu, Jialin Ding, Haobo Zhang, Qian Lin","doi":"arxiv-2409.00915","DOIUrl":null,"url":null,"abstract":"Building on recent studies of large-dimensional kernel regression,\nparticularly those involving inner product kernels on the sphere\n$\\mathbb{S}^{d}$, we investigate the Pinsker bound for inner product kernel\nregression in such settings. Specifically, we address the scenario where the\nsample size $n$ is given by $\\alpha d^{\\gamma}(1+o_{d}(1))$ for some $\\alpha,\n\\gamma>0$. We have determined the exact minimax risk for kernel regression in\nthis setting, not only identifying the minimax rate but also the exact\nconstant, known as the Pinsker constant, associated with the excess risk.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Pinsker bound of inner product kernel regression in large dimensions\",\"authors\":\"Weihao Lu, Jialin Ding, Haobo Zhang, Qian Lin\",\"doi\":\"arxiv-2409.00915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on recent studies of large-dimensional kernel regression,\\nparticularly those involving inner product kernels on the sphere\\n$\\\\mathbb{S}^{d}$, we investigate the Pinsker bound for inner product kernel\\nregression in such settings. Specifically, we address the scenario where the\\nsample size $n$ is given by $\\\\alpha d^{\\\\gamma}(1+o_{d}(1))$ for some $\\\\alpha,\\n\\\\gamma>0$. We have determined the exact minimax risk for kernel regression in\\nthis setting, not only identifying the minimax rate but also the exact\\nconstant, known as the Pinsker constant, associated with the excess risk.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于最近对大维核回归的研究,特别是涉及球面上内积核的研究,我们研究了在这种情况下内积核回归的平斯克约束。具体来说,我们研究了样本大小 $n$ 由 $\alpha d^{/gamma}(1+o_{d}(1))$ 给出的情况,其中 $\alpha,\gamma>0$。我们已经确定了这种情况下核回归的精确最小风险,不仅确定了最小风险率,还确定了与超额风险相关的精确常数,即 Pinsker 常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Pinsker bound of inner product kernel regression in large dimensions
Building on recent studies of large-dimensional kernel regression, particularly those involving inner product kernels on the sphere $\mathbb{S}^{d}$, we investigate the Pinsker bound for inner product kernel regression in such settings. Specifically, we address the scenario where the sample size $n$ is given by $\alpha d^{\gamma}(1+o_{d}(1))$ for some $\alpha, \gamma>0$. We have determined the exact minimax risk for kernel regression in this setting, not only identifying the minimax rate but also the exact constant, known as the Pinsker constant, associated with the excess risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信