利用机器学习从 21 厘米亮度温度场推断 HI 的密度场、自旋温度场和中性分数场

Bohdan Bidenko, Léon V. E. Koopmans, P. Daniel Meerburg
{"title":"利用机器学习从 21 厘米亮度温度场推断 HI 的密度场、自旋温度场和中性分数场","authors":"Bohdan Bidenko, Léon V. E. Koopmans, P. Daniel Meerburg","doi":"arxiv-2409.06769","DOIUrl":null,"url":null,"abstract":"The 21-cm brightness-temperature field of neutral hydrogen during the Epoch\nof Reionization and Cosmic Dawn is a rich source of cosmological and\nastrophysical information, primarily due to its significant non-Gaussian\nfeatures. However, the complex, nonlinear nature of the underlying physical\nprocesses makes analytical modelling of this signal challenging. Consequently,\nstudies often resort to semi-numerical simulations. Traditional analysis\nmethods, which rely on a limited set of summary statistics, may not adequately\ncapture the non-Gaussian content of the data, as the most informative\nstatistics are not predetermined. This paper explores the application of\nmachine learning (ML) to surpass the limitations of summary statistics by\nleveraging the inherent non-Gaussian characteristics of the 21-cm signal. We\ndemonstrate that a well-trained neural network can independently reconstruct\nthe hydrogen density, spin-temperature, and neutral-fraction fields with\ncross-coherence values exceeding 0.95 for $k$-modes below $0.5$ Mpc h$^{-1}$,\nbased on a representative simulation at a redshift of $z \\approx 15$. To\nachieve this, the neural network utilises the non-Gaussian information in\nbrightness temperature images over many scales. We discuss how these\nreconstructed fields, which vary in their sensitivity to model parameters, can\nbe employed for parameter inference, offering more direct insights into\nunderlying cosmological and astrophysical processes only using limited summary\nstatistics of the brightness temperature field, such as its power spectrum.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring the density, spin-temperature and neutral-fraction fields of HI from its 21-cm brightness temperature field using machine learning\",\"authors\":\"Bohdan Bidenko, Léon V. E. Koopmans, P. Daniel Meerburg\",\"doi\":\"arxiv-2409.06769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 21-cm brightness-temperature field of neutral hydrogen during the Epoch\\nof Reionization and Cosmic Dawn is a rich source of cosmological and\\nastrophysical information, primarily due to its significant non-Gaussian\\nfeatures. However, the complex, nonlinear nature of the underlying physical\\nprocesses makes analytical modelling of this signal challenging. Consequently,\\nstudies often resort to semi-numerical simulations. Traditional analysis\\nmethods, which rely on a limited set of summary statistics, may not adequately\\ncapture the non-Gaussian content of the data, as the most informative\\nstatistics are not predetermined. This paper explores the application of\\nmachine learning (ML) to surpass the limitations of summary statistics by\\nleveraging the inherent non-Gaussian characteristics of the 21-cm signal. We\\ndemonstrate that a well-trained neural network can independently reconstruct\\nthe hydrogen density, spin-temperature, and neutral-fraction fields with\\ncross-coherence values exceeding 0.95 for $k$-modes below $0.5$ Mpc h$^{-1}$,\\nbased on a representative simulation at a redshift of $z \\\\approx 15$. To\\nachieve this, the neural network utilises the non-Gaussian information in\\nbrightness temperature images over many scales. We discuss how these\\nreconstructed fields, which vary in their sensitivity to model parameters, can\\nbe employed for parameter inference, offering more direct insights into\\nunderlying cosmological and astrophysical processes only using limited summary\\nstatistics of the brightness temperature field, such as its power spectrum.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

再电离和宇宙黎明纪(Epochof Reionization and Cosmic Dawn)期间中性氢的 21 厘米亮度-温度场是宇宙学和天体物理学信息的丰富来源,这主要是由于它具有显著的非高斯特征。然而,由于基本物理过程的复杂性和非线性,对这一信号进行分析建模具有挑战性。因此,研究通常采用半数值模拟。传统的分析方法依赖于一组有限的汇总统计量,可能无法充分捕捉数据的非高斯内容,因为最有信息量的统计量并不是预先确定的。本文探讨了机器学习(ML)的应用,通过利用 21 厘米信号固有的非高斯特性来超越汇总统计的局限性。我们演示了一个训练有素的神经网络可以独立地重建氢密度场、自旋-温度场和中性分数场,对于低于0.5 Mpc h$^{-1}$的k$模式,交叉相干值超过0.95,这是基于红移为$z \约15$的代表性模拟。为了实现这一目标,神经网络利用了许多尺度的亮度温度图像中的非高斯信息。我们讨论了如何利用这些对模型参数敏感度不同的重建场来进行参数推断,从而仅利用亮度温度场的有限摘要统计(如其功率谱)就能更直接地洞察宇宙学和天体物理学的内在过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring the density, spin-temperature and neutral-fraction fields of HI from its 21-cm brightness temperature field using machine learning
The 21-cm brightness-temperature field of neutral hydrogen during the Epoch of Reionization and Cosmic Dawn is a rich source of cosmological and astrophysical information, primarily due to its significant non-Gaussian features. However, the complex, nonlinear nature of the underlying physical processes makes analytical modelling of this signal challenging. Consequently, studies often resort to semi-numerical simulations. Traditional analysis methods, which rely on a limited set of summary statistics, may not adequately capture the non-Gaussian content of the data, as the most informative statistics are not predetermined. This paper explores the application of machine learning (ML) to surpass the limitations of summary statistics by leveraging the inherent non-Gaussian characteristics of the 21-cm signal. We demonstrate that a well-trained neural network can independently reconstruct the hydrogen density, spin-temperature, and neutral-fraction fields with cross-coherence values exceeding 0.95 for $k$-modes below $0.5$ Mpc h$^{-1}$, based on a representative simulation at a redshift of $z \approx 15$. To achieve this, the neural network utilises the non-Gaussian information in brightness temperature images over many scales. We discuss how these reconstructed fields, which vary in their sensitivity to model parameters, can be employed for parameter inference, offering more direct insights into underlying cosmological and astrophysical processes only using limited summary statistics of the brightness temperature field, such as its power spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信