{"title":"关于自由山口组代数","authors":"Jonatan Stava","doi":"arxiv-2408.10815","DOIUrl":null,"url":null,"abstract":"Lie Yamaguti algebras appear naturally on the smooth sections of the tangent\nbundle of a reductive homogeneous space when we interpret the torsion and\ncurvature as algebraic operators. In this article we present a description of\nthe free Lie Yamaguti algebra.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the free Lie-Yamaguti algebra\",\"authors\":\"Jonatan Stava\",\"doi\":\"arxiv-2408.10815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lie Yamaguti algebras appear naturally on the smooth sections of the tangent\\nbundle of a reductive homogeneous space when we interpret the torsion and\\ncurvature as algebraic operators. In this article we present a description of\\nthe free Lie Yamaguti algebra.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lie Yamaguti algebras appear naturally on the smooth sections of the tangent
bundle of a reductive homogeneous space when we interpret the torsion and
curvature as algebraic operators. In this article we present a description of
the free Lie Yamaguti algebra.