{"title":"内$σ$衍生的有界偏斜幂级数环","authors":"Adam Jones, William Woods","doi":"arxiv-2408.10545","DOIUrl":null,"url":null,"abstract":"We define and explore the bounded skew power series ring\n$R^+[[x;\\sigma,\\delta]]$ defined over a complete, filtered, Noetherian prime\nring $R$ with a commuting skew derivation $(\\sigma,\\delta)$. We establish\nprecise criteria for when this ring is well-defined, and for an appropriate\ncompletion $Q$ of $Q(R)$, we prove that if $Q$ has characteristic $p$, $\\delta$\nis an inner $\\sigma$-derivation and no positive power of $\\sigma$ is inner as\nan automorphism of $Q$, then $Q^+[[x;\\sigma,\\delta]]$ is often prime, and even\nsimple under certain mild restrictions on $\\delta$. It follows from this result\nthat $R^+[[x;\\sigma,\\delta]]$ is itself prime.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded skew power series rings for inner $σ$-derivations\",\"authors\":\"Adam Jones, William Woods\",\"doi\":\"arxiv-2408.10545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define and explore the bounded skew power series ring\\n$R^+[[x;\\\\sigma,\\\\delta]]$ defined over a complete, filtered, Noetherian prime\\nring $R$ with a commuting skew derivation $(\\\\sigma,\\\\delta)$. We establish\\nprecise criteria for when this ring is well-defined, and for an appropriate\\ncompletion $Q$ of $Q(R)$, we prove that if $Q$ has characteristic $p$, $\\\\delta$\\nis an inner $\\\\sigma$-derivation and no positive power of $\\\\sigma$ is inner as\\nan automorphism of $Q$, then $Q^+[[x;\\\\sigma,\\\\delta]]$ is often prime, and even\\nsimple under certain mild restrictions on $\\\\delta$. It follows from this result\\nthat $R^+[[x;\\\\sigma,\\\\delta]]$ is itself prime.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bounded skew power series rings for inner $σ$-derivations
We define and explore the bounded skew power series ring
$R^+[[x;\sigma,\delta]]$ defined over a complete, filtered, Noetherian prime
ring $R$ with a commuting skew derivation $(\sigma,\delta)$. We establish
precise criteria for when this ring is well-defined, and for an appropriate
completion $Q$ of $Q(R)$, we prove that if $Q$ has characteristic $p$, $\delta$
is an inner $\sigma$-derivation and no positive power of $\sigma$ is inner as
an automorphism of $Q$, then $Q^+[[x;\sigma,\delta]]$ is often prime, and even
simple under certain mild restrictions on $\delta$. It follows from this result
that $R^+[[x;\sigma,\delta]]$ is itself prime.