论 Frobenius-Kähler 和 Sasakian 列阵的扩展

M. C. ROdríguez-Vallarte, G. Salgado, O. A. Sánchez-Valenzuela
{"title":"论 Frobenius-Kähler 和 Sasakian 列阵的扩展","authors":"M. C. ROdríguez-Vallarte, G. Salgado, O. A. Sánchez-Valenzuela","doi":"arxiv-2408.11236","DOIUrl":null,"url":null,"abstract":"Extensions of Lie algebras equipped with Sasakian or Frobenius-K\\\"ahler\ngeometrical structures are studied. Conditions are given so that a double\nextension of a Sasakian Lie algebra be Sasakian again. Conditions are also\ngiven for obtaining either a Sasakian or a Frobernius-K\\\"ahler Lie algebra upon\nrespectively extending a Frobernius-K\\\"ahler or a Sasakian Lie algebra by\nadjoining a derivation of the source algebra. Low-dimensional examples are\nincluded.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On extensions of Frobenius-Kähler and Sasakian Lie algebras\",\"authors\":\"M. C. ROdríguez-Vallarte, G. Salgado, O. A. Sánchez-Valenzuela\",\"doi\":\"arxiv-2408.11236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensions of Lie algebras equipped with Sasakian or Frobenius-K\\\\\\\"ahler\\ngeometrical structures are studied. Conditions are given so that a double\\nextension of a Sasakian Lie algebra be Sasakian again. Conditions are also\\ngiven for obtaining either a Sasakian or a Frobernius-K\\\\\\\"ahler Lie algebra upon\\nrespectively extending a Frobernius-K\\\\\\\"ahler or a Sasakian Lie algebra by\\nadjoining a derivation of the source algebra. Low-dimensional examples are\\nincluded.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有萨萨基或弗罗贝纽斯-阿勒几何结构的李代数的扩展。给出了使萨萨基李代数的双重扩展再次成为萨萨基的条件。还给出了在通过加入源代数的派生而分别扩展弗罗贝纽斯-克勒或萨萨基李代数时获得萨萨基或弗罗贝纽斯-克勒李代数的条件。低维的例子也包括在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On extensions of Frobenius-Kähler and Sasakian Lie algebras
Extensions of Lie algebras equipped with Sasakian or Frobenius-K\"ahler geometrical structures are studied. Conditions are given so that a double extension of a Sasakian Lie algebra be Sasakian again. Conditions are also given for obtaining either a Sasakian or a Frobernius-K\"ahler Lie algebra upon respectively extending a Frobernius-K\"ahler or a Sasakian Lie algebra by adjoining a derivation of the source algebra. Low-dimensional examples are included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信