M. C. ROdríguez-Vallarte, G. Salgado, O. A. Sánchez-Valenzuela
{"title":"论 Frobenius-Kähler 和 Sasakian 列阵的扩展","authors":"M. C. ROdríguez-Vallarte, G. Salgado, O. A. Sánchez-Valenzuela","doi":"arxiv-2408.11236","DOIUrl":null,"url":null,"abstract":"Extensions of Lie algebras equipped with Sasakian or Frobenius-K\\\"ahler\ngeometrical structures are studied. Conditions are given so that a double\nextension of a Sasakian Lie algebra be Sasakian again. Conditions are also\ngiven for obtaining either a Sasakian or a Frobernius-K\\\"ahler Lie algebra upon\nrespectively extending a Frobernius-K\\\"ahler or a Sasakian Lie algebra by\nadjoining a derivation of the source algebra. Low-dimensional examples are\nincluded.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On extensions of Frobenius-Kähler and Sasakian Lie algebras\",\"authors\":\"M. C. ROdríguez-Vallarte, G. Salgado, O. A. Sánchez-Valenzuela\",\"doi\":\"arxiv-2408.11236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensions of Lie algebras equipped with Sasakian or Frobenius-K\\\\\\\"ahler\\ngeometrical structures are studied. Conditions are given so that a double\\nextension of a Sasakian Lie algebra be Sasakian again. Conditions are also\\ngiven for obtaining either a Sasakian or a Frobernius-K\\\\\\\"ahler Lie algebra upon\\nrespectively extending a Frobernius-K\\\\\\\"ahler or a Sasakian Lie algebra by\\nadjoining a derivation of the source algebra. Low-dimensional examples are\\nincluded.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On extensions of Frobenius-Kähler and Sasakian Lie algebras
Extensions of Lie algebras equipped with Sasakian or Frobenius-K\"ahler
geometrical structures are studied. Conditions are given so that a double
extension of a Sasakian Lie algebra be Sasakian again. Conditions are also
given for obtaining either a Sasakian or a Frobernius-K\"ahler Lie algebra upon
respectively extending a Frobernius-K\"ahler or a Sasakian Lie algebra by
adjoining a derivation of the source algebra. Low-dimensional examples are
included.