尼曼平面和射影模定理的等模概化

Leonid Positselski
{"title":"尼曼平面和射影模定理的等模概化","authors":"Leonid Positselski","doi":"arxiv-2408.10928","DOIUrl":null,"url":null,"abstract":"This paper builds on top of arXiv:2306.02734. We consider a complete,\nseparated topological ring $\\mathfrak R$ with a countable base of neighborhoods\nof zero consisting of open two-sided ideals. The main result is that the\nhomotopy category of projective left $\\mathfrak R$-contramodules is equivalent\nto the derived category of the exact category of flat left $\\mathfrak\nR$-contramodules. In other words, a complex of flat $\\mathfrak R$-contramodules\nis contraacyclic in the sense of Becker if and only if it is an acyclic complex\nwith flat $\\mathfrak R$-contramodules of cocycles.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A contramodule generalization of Neeman's flat and projective module theorem\",\"authors\":\"Leonid Positselski\",\"doi\":\"arxiv-2408.10928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper builds on top of arXiv:2306.02734. We consider a complete,\\nseparated topological ring $\\\\mathfrak R$ with a countable base of neighborhoods\\nof zero consisting of open two-sided ideals. The main result is that the\\nhomotopy category of projective left $\\\\mathfrak R$-contramodules is equivalent\\nto the derived category of the exact category of flat left $\\\\mathfrak\\nR$-contramodules. In other words, a complex of flat $\\\\mathfrak R$-contramodules\\nis contraacyclic in the sense of Becker if and only if it is an acyclic complex\\nwith flat $\\\\mathfrak R$-contramodules of cocycles.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立在 arXiv:2306.02734 的基础之上。我们考虑了一个完整的、分离的拓扑环 $\mathfrak R$,它有一个由开放的两面理想组成的零邻域的可数基。主要结果是投影左$\mathfrak R$-contramodules 的同调范畴等价于平面左$\mathfrak R$-contramodules 的精确范畴的派生范畴。换句话说,当且仅当一个平面$\mathfrak R$-contramodules 的复数是一个具有平面$\mathfrak R$-contramodules 的共环的无环复数时,它才是贝克尔意义上的反循环复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A contramodule generalization of Neeman's flat and projective module theorem
This paper builds on top of arXiv:2306.02734. We consider a complete, separated topological ring $\mathfrak R$ with a countable base of neighborhoods of zero consisting of open two-sided ideals. The main result is that the homotopy category of projective left $\mathfrak R$-contramodules is equivalent to the derived category of the exact category of flat left $\mathfrak R$-contramodules. In other words, a complex of flat $\mathfrak R$-contramodules is contraacyclic in the sense of Becker if and only if it is an acyclic complex with flat $\mathfrak R$-contramodules of cocycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信