{"title":"尼曼平面和射影模定理的等模概化","authors":"Leonid Positselski","doi":"arxiv-2408.10928","DOIUrl":null,"url":null,"abstract":"This paper builds on top of arXiv:2306.02734. We consider a complete,\nseparated topological ring $\\mathfrak R$ with a countable base of neighborhoods\nof zero consisting of open two-sided ideals. The main result is that the\nhomotopy category of projective left $\\mathfrak R$-contramodules is equivalent\nto the derived category of the exact category of flat left $\\mathfrak\nR$-contramodules. In other words, a complex of flat $\\mathfrak R$-contramodules\nis contraacyclic in the sense of Becker if and only if it is an acyclic complex\nwith flat $\\mathfrak R$-contramodules of cocycles.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A contramodule generalization of Neeman's flat and projective module theorem\",\"authors\":\"Leonid Positselski\",\"doi\":\"arxiv-2408.10928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper builds on top of arXiv:2306.02734. We consider a complete,\\nseparated topological ring $\\\\mathfrak R$ with a countable base of neighborhoods\\nof zero consisting of open two-sided ideals. The main result is that the\\nhomotopy category of projective left $\\\\mathfrak R$-contramodules is equivalent\\nto the derived category of the exact category of flat left $\\\\mathfrak\\nR$-contramodules. In other words, a complex of flat $\\\\mathfrak R$-contramodules\\nis contraacyclic in the sense of Becker if and only if it is an acyclic complex\\nwith flat $\\\\mathfrak R$-contramodules of cocycles.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A contramodule generalization of Neeman's flat and projective module theorem
This paper builds on top of arXiv:2306.02734. We consider a complete,
separated topological ring $\mathfrak R$ with a countable base of neighborhoods
of zero consisting of open two-sided ideals. The main result is that the
homotopy category of projective left $\mathfrak R$-contramodules is equivalent
to the derived category of the exact category of flat left $\mathfrak
R$-contramodules. In other words, a complex of flat $\mathfrak R$-contramodules
is contraacyclic in the sense of Becker if and only if it is an acyclic complex
with flat $\mathfrak R$-contramodules of cocycles.