非交叉积定理部分内容的证明

Mehran Motiee
{"title":"非交叉积定理部分内容的证明","authors":"Mehran Motiee","doi":"arxiv-2408.12711","DOIUrl":null,"url":null,"abstract":"The first examples of noncrossed product division algebras were given by\nAmitsur in 1972. His method is based on two basic steps: (1) If the universal\ndivision algebra $U(k,n)$ is a $G$-crossed product then every division algebra\nof degree $n$ over $k$ should be a $G$-crossed product; (2) There are two\ndivision algebras over $k$ whose maximal subfields do not have a common Galois\ngroup. In this note, we give a short proof for the second step in the case\nwhere $\\chr k\\nmid n$ and $p^3|n$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proof for a part of noncrossed product theorem\",\"authors\":\"Mehran Motiee\",\"doi\":\"arxiv-2408.12711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first examples of noncrossed product division algebras were given by\\nAmitsur in 1972. His method is based on two basic steps: (1) If the universal\\ndivision algebra $U(k,n)$ is a $G$-crossed product then every division algebra\\nof degree $n$ over $k$ should be a $G$-crossed product; (2) There are two\\ndivision algebras over $k$ whose maximal subfields do not have a common Galois\\ngroup. In this note, we give a short proof for the second step in the case\\nwhere $\\\\chr k\\\\nmid n$ and $p^3|n$.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1972 年,阿米瑟给出了非交叉积分代数的第一个例子。他的方法基于两个基本步骤:(1) 如果普分代数 $U(k,n)$ 是 $G$ 交叉积,那么 $k$ 上的每个度数为 $n$ 的分代数都应该是 $G$ 交叉积;(2) $k$ 上有两个分代数,它们的最大子域没有共同的伽罗瓦群。在本注中,我们给出了在 $\chr k\nmid n$ 和 $p^3|n$ 的情况下第二步的简短证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proof for a part of noncrossed product theorem
The first examples of noncrossed product division algebras were given by Amitsur in 1972. His method is based on two basic steps: (1) If the universal division algebra $U(k,n)$ is a $G$-crossed product then every division algebra of degree $n$ over $k$ should be a $G$-crossed product; (2) There are two division algebras over $k$ whose maximal subfields do not have a common Galois group. In this note, we give a short proof for the second step in the case where $\chr k\nmid n$ and $p^3|n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信