利用投影几何代数中的退化现象

John Bamberg, Jeff Saunders
{"title":"利用投影几何代数中的退化现象","authors":"John Bamberg, Jeff Saunders","doi":"arxiv-2408.13441","DOIUrl":null,"url":null,"abstract":"The last two decades, since the seminal work of Selig, has seen projective\ngeometric algebra (PGA) gain popularity as a modern coordinate-free framework\nfor doing classical Euclidean geometry and other Cayley-Klein geometries. This\nframework is based upon a degenerate Clifford algebra, and it is the purpose of\nthis paper to delve deeper into its internal algebraic structure and extract\nmeaningful information for the purposes of PGA. This includes exploiting the\nsplit extension structure to realise the natural decomposition of elements of\nthis Clifford algebra into Euclidean and ideal parts. This leads to a beautiful\ndemonstration of how Playfair's axiom for affine geometry arises from the\nambient degenerate quadratic space. The highlighted split extension property of\nthe Clifford algebra also corresponds to a splitting of the group of units and\nthe Lie algebra of bivectors. Central to these results is that the degenerate\nClifford algebra $\\mathrm{Cl}(V)$ is isomorphic to the twisted trivial\nextension $\\mathrm{Cl}(V/\\langle e_0\\rangle)\\ltimes_\\alpha\\mathrm{Cl}(V/\\langle\ne_0\\rangle)$, where $e_0$ is a degenerate vector and $\\alpha$ is the\ngrade-involution.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting degeneracy in projective geometric algebra\",\"authors\":\"John Bamberg, Jeff Saunders\",\"doi\":\"arxiv-2408.13441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last two decades, since the seminal work of Selig, has seen projective\\ngeometric algebra (PGA) gain popularity as a modern coordinate-free framework\\nfor doing classical Euclidean geometry and other Cayley-Klein geometries. This\\nframework is based upon a degenerate Clifford algebra, and it is the purpose of\\nthis paper to delve deeper into its internal algebraic structure and extract\\nmeaningful information for the purposes of PGA. This includes exploiting the\\nsplit extension structure to realise the natural decomposition of elements of\\nthis Clifford algebra into Euclidean and ideal parts. This leads to a beautiful\\ndemonstration of how Playfair's axiom for affine geometry arises from the\\nambient degenerate quadratic space. The highlighted split extension property of\\nthe Clifford algebra also corresponds to a splitting of the group of units and\\nthe Lie algebra of bivectors. Central to these results is that the degenerate\\nClifford algebra $\\\\mathrm{Cl}(V)$ is isomorphic to the twisted trivial\\nextension $\\\\mathrm{Cl}(V/\\\\langle e_0\\\\rangle)\\\\ltimes_\\\\alpha\\\\mathrm{Cl}(V/\\\\langle\\ne_0\\\\rangle)$, where $e_0$ is a degenerate vector and $\\\\alpha$ is the\\ngrade-involution.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自塞利格的开创性工作以来,投影几何代数(PGA)作为研究经典欧几里得几何和其他开莱-克莱因几何的现代无坐标框架,在过去二十年中广受欢迎。这一框架基于退化的克利福德代数,本文的目的是深入研究其内部代数结构,并提取有意义的信息用于 PGA。这包括利用分裂扩展结构,实现将这个克利福德代数的元素自然分解为欧几里得部分和理想部分。这就漂亮地展示了普莱费尔公理的仿射几何是如何从周围的退化二次空间中产生的。所强调的克利福德代数的分裂扩展性质也对应于单位群和双向列代数的分裂。这些结果的核心是退化克利福德代数 $\mathrm{Cl}(V)$ 与扭曲三维扩展 $\mathrm{Cl}(V//langlee_0\rangle)\ltimes_\alpha\mathrm{Cl}(V/\langlee_0\rangle)$ 同构,其中 $e_0$ 是退化向量,$\alpha$ 是级数卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting degeneracy in projective geometric algebra
The last two decades, since the seminal work of Selig, has seen projective geometric algebra (PGA) gain popularity as a modern coordinate-free framework for doing classical Euclidean geometry and other Cayley-Klein geometries. This framework is based upon a degenerate Clifford algebra, and it is the purpose of this paper to delve deeper into its internal algebraic structure and extract meaningful information for the purposes of PGA. This includes exploiting the split extension structure to realise the natural decomposition of elements of this Clifford algebra into Euclidean and ideal parts. This leads to a beautiful demonstration of how Playfair's axiom for affine geometry arises from the ambient degenerate quadratic space. The highlighted split extension property of the Clifford algebra also corresponds to a splitting of the group of units and the Lie algebra of bivectors. Central to these results is that the degenerate Clifford algebra $\mathrm{Cl}(V)$ is isomorphic to the twisted trivial extension $\mathrm{Cl}(V/\langle e_0\rangle)\ltimes_\alpha\mathrm{Cl}(V/\langle e_0\rangle)$, where $e_0$ is a degenerate vector and $\alpha$ is the grade-involution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信