Peiyu Zhang, Yiwen Shi, Dajun Liu, Li Wang, Jiaqun Wei
{"title":"自正交子范畴诱导的外差范畴的四分体","authors":"Peiyu Zhang, Yiwen Shi, Dajun Liu, Li Wang, Jiaqun Wei","doi":"arxiv-2408.14098","DOIUrl":null,"url":null,"abstract":"Let C be an extriangulated category. We prove that two quotient categories of\nextriangu?lated categories induced by selforthogonal subcategories are\nequivalent to module categories by restriction of two functors E and Hom,\nrespectively. Moreover, if the selforthogonal sub?category is contravariantly\nfinite, then one of the two quotient categories is abelian. This result can be\nregarded as a generalization of Demonet-Liu and Zhou-Zhu.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quotients of extriangulated categories induced by selforthogonal subcategories\",\"authors\":\"Peiyu Zhang, Yiwen Shi, Dajun Liu, Li Wang, Jiaqun Wei\",\"doi\":\"arxiv-2408.14098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C be an extriangulated category. We prove that two quotient categories of\\nextriangu?lated categories induced by selforthogonal subcategories are\\nequivalent to module categories by restriction of two functors E and Hom,\\nrespectively. Moreover, if the selforthogonal sub?category is contravariantly\\nfinite, then one of the two quotient categories is abelian. This result can be\\nregarded as a generalization of Demonet-Liu and Zhou-Zhu.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 C 是一个外差范畴。我们证明,由自正交子范畴诱导的外差范畴的两个商范畴,通过两个函数 E 和 Hom 的限制,分别等价于模块范畴。此外,如果自正交子范畴是逆变无限的,那么两个商范畴中就有一个是无性的。这一结果可以看作是刘德莫内和朱周的概括。
Quotients of extriangulated categories induced by selforthogonal subcategories
Let C be an extriangulated category. We prove that two quotient categories of
extriangu?lated categories induced by selforthogonal subcategories are
equivalent to module categories by restriction of two functors E and Hom,
respectively. Moreover, if the selforthogonal sub?category is contravariantly
finite, then one of the two quotient categories is abelian. This result can be
regarded as a generalization of Demonet-Liu and Zhou-Zhu.