自正交子范畴诱导的外差范畴的四分体

Peiyu Zhang, Yiwen Shi, Dajun Liu, Li Wang, Jiaqun Wei
{"title":"自正交子范畴诱导的外差范畴的四分体","authors":"Peiyu Zhang, Yiwen Shi, Dajun Liu, Li Wang, Jiaqun Wei","doi":"arxiv-2408.14098","DOIUrl":null,"url":null,"abstract":"Let C be an extriangulated category. We prove that two quotient categories of\nextriangu?lated categories induced by selforthogonal subcategories are\nequivalent to module categories by restriction of two functors E and Hom,\nrespectively. Moreover, if the selforthogonal sub?category is contravariantly\nfinite, then one of the two quotient categories is abelian. This result can be\nregarded as a generalization of Demonet-Liu and Zhou-Zhu.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quotients of extriangulated categories induced by selforthogonal subcategories\",\"authors\":\"Peiyu Zhang, Yiwen Shi, Dajun Liu, Li Wang, Jiaqun Wei\",\"doi\":\"arxiv-2408.14098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C be an extriangulated category. We prove that two quotient categories of\\nextriangu?lated categories induced by selforthogonal subcategories are\\nequivalent to module categories by restriction of two functors E and Hom,\\nrespectively. Moreover, if the selforthogonal sub?category is contravariantly\\nfinite, then one of the two quotient categories is abelian. This result can be\\nregarded as a generalization of Demonet-Liu and Zhou-Zhu.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 C 是一个外差范畴。我们证明,由自正交子范畴诱导的外差范畴的两个商范畴,通过两个函数 E 和 Hom 的限制,分别等价于模块范畴。此外,如果自正交子范畴是逆变无限的,那么两个商范畴中就有一个是无性的。这一结果可以看作是刘德莫内和朱周的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quotients of extriangulated categories induced by selforthogonal subcategories
Let C be an extriangulated category. We prove that two quotient categories of extriangu?lated categories induced by selforthogonal subcategories are equivalent to module categories by restriction of two functors E and Hom, respectively. Moreover, if the selforthogonal sub?category is contravariantly finite, then one of the two quotient categories is abelian. This result can be regarded as a generalization of Demonet-Liu and Zhou-Zhu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信