交换群代数的 Krull-Remak-Schmidt 分解

Robert Christian Subroto
{"title":"交换群代数的 Krull-Remak-Schmidt 分解","authors":"Robert Christian Subroto","doi":"arxiv-2408.14665","DOIUrl":null,"url":null,"abstract":"We provide the Krull-Remak-Schmidt decomposition of group algebras of the\nform $k[G]$ where $k$ is a field, which includes fields with prime\ncharacteristic, and $G$ a finite abelian group. We achieved this by studying\nthe geometric equivalence of $k[G]$ which we call circulant coordinate rings.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Krull-Remak-Schmidt decomposition of commutative group algebras\",\"authors\":\"Robert Christian Subroto\",\"doi\":\"arxiv-2408.14665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide the Krull-Remak-Schmidt decomposition of group algebras of the\\nform $k[G]$ where $k$ is a field, which includes fields with prime\\ncharacteristic, and $G$ a finite abelian group. We achieved this by studying\\nthe geometric equivalence of $k[G]$ which we call circulant coordinate rings.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了 $k[G]$ 形式群集的 Krull-Remak-Schmidt 分解,其中 $k$ 是一个域,包括具有素数特征的域,而 $G$ 是一个有限无性群。我们通过研究$k[G]$的几何等价性来实现这一目标,我们称其为圆周坐标环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Krull-Remak-Schmidt decomposition of commutative group algebras
We provide the Krull-Remak-Schmidt decomposition of group algebras of the form $k[G]$ where $k$ is a field, which includes fields with prime characteristic, and $G$ a finite abelian group. We achieved this by studying the geometric equivalence of $k[G]$ which we call circulant coordinate rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信